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   Abstract—Previous  deep  learning-based  super-resolution  (SR)
methods  rely  on  the  assumption  that  the  degradation  process  is
predefined  (e.g.,  bicubic  downsampling).  Thus,  their  perfor-
mance would suffer from deterioration if  the real  degradation is
not  consistent  with  the  assumption.  To  deal  with  real-world  sce-
narios,  existing  blind  SR  methods  are  committed  to  estimating
both the degradation and the super-resolved image with an extra
loss  or  iterative  scheme.  However,  degradation  estimation  that
requires  more  computation  would  result  in  limited  SR  perfor-
mance  due  to  the  accumulated  estimation  errors.  In  this  paper,
we  propose  a  contrastive  regularization  built  upon  contrastive
learning  to  exploit  both  the  information  of  blurry  images  and
clear images as  negative and positive samples,  respectively.  Con-
trastive  regularization  ensures  that  the  restored  image  is  pulled
closer  to  the  clear  image  and  pushed  far  away  from  the  blurry
image  in  the  representation  space.  Furthermore,  instead  of  esti-
mating  the  degradation,  we  extract  global  statistical  prior  infor-
mation to capture the character of the distortion. Considering the
coupling  between  the  degradation  and  the  low-resolution  image,
we embed the global prior into the distortion-specific SR network
to  make  our  method  adaptive  to  the  changes  of  distortions.  We
term our  distortion-specific  network  with  contrastive  regulariza-
tion as CRDNet. The extensive experiments on synthetic and real-
world  scenes  demonstrate  that  our  lightweight  CRDNet  sur-
passes state-of-the-art blind super-resolution approaches.
    Index Terms—Blind  super-resolution,  contrastive  learning,  deep
learning, image super-resolution (SR).
  

I.  Introduction

S INGLE  image  super-resolution  (SISR)  aims  to  restore  a
high-resolution  (HR)  image  from  a  given  low-resolution

(LR) observation. This task is a prerequisite of many applica-
tions,  including  medical  diagnosis  and  video  surveillance,  to
name a few. As an inverse problem, the SISR task is coupled
with  the  degradation  process  and  is  highly  ill-posed,  which
requires  further  study  in  low-level  computer  vision.  A  popu-
lar strategy for solving the SISR problem is to construct con-

volution neural  networks with the assumption that  the degra-
dation process is predefined and fixed, e.g., bicubic downsam-
pling [1]–[11].  In  this  way,  a  great  number  of  HR-LR image
pairs are obtained by using predefined degradation to drive the
sophisticated networks. Thus, evaluated on the same degrada-
tion,  these  methods  have  achieved  increasing  objective  SR
performance,  i.e.,  peak  signal-to-noise  ratio  (PSNR),  and
structure similarity (SSIM). However, in real-world scenarios,
the  degradation  process  is  usually  unknown  and  diverse
among  images  due  to  imaging  and  transmission.  The  mis-
match between the simplistic degradation assumption in exist-
ing  SISR  algorithms  and  the  intrinsic  degradations  of  real
inputs  brings  about  the  difficulty  for  these  data-driven  SISR
methods  in  real  applications.  Consequently,  their  perfor-
mance  suffers  from severe  deterioration  even  if  the  degrada-
tion is  slightly different.  Therefore,  recently,  researchers  turn
to pay more attention to blind SR, where the true degradation
process is unknown.

For blind SR task, most existing methods generate LR ima-
ges from HR inputs via the following mathematically model:
 

y = (x⊗k) ↓s + n (1)
⊗

↓s

where y is the LR image, x is the corresponding HR image, 
represents the blur operation with the kernel k,  denotes the
downsampling process with a scale factor s, and n denotes the
noise  level.  In  this  case,  several  learning-based  methods  cast
into  a  two-step  solution, i.e. ,  estimating  the  blur  kernel  from
the given LR input and then recovering the SR result based on
the estimated kernel, or iteratively optimize the kernel and the
SR estimation [12]–[14]. Nevertheless, it is still a challenge to
customize an effective and efficient method for practical use.
The  challenges  mainly  come  from  three  aspects.  Firstly,  the
iterative  optimization  process  will  inevitably  increase  the
computational  load.  Secondly,  the  mismatch  of  the  blur  ker-
nel  would  further  contribute  to  the  SR  reconstruction  error.
For example, if the real blur kernel is spatially variant in real
scenarios,  the  performance  of  these  two-step  methods  would
degrade  badly.  Thirdly,  the  generated  images  regularized  by
the pixel loss would be over-smoothed.

To address the above three challenges, instead of estimating
the kernel, we consider the global statistical information of the
distorted LR image as prior information and impose the con-
trastive regularization on the reconstructed results to solve the
blind SR problem, which is implemented by a distortion-spe-
cific  SR  network  with  contrastive  regularization,  termed  as
CRDNet. Inspired by [15], due to the presence of distortions,
scene  statistics  of  locally  normalized  luminance  coefficients
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can be used to quantify potential losses of “naturalness” in the
image. In addition, equipped with global characteristic statisti-
cal  properties,  mean  subtracted  contrast  normalized  (MSCN)
coefficients  can  greatly  reduce  dependencies  between  neigh-
borhoods, which is complementary to the features captured in
the neural network. Based on this observation, refraining from
an explicit  characterization of  degradations,  we introduce the
MSCN  coefficients  into  the  network  to  extract  the  global
prior, aiming to capture the distortion-oriented global statisti-
cal  properties.  Specifically,  we  embed  the  global  prior  into
both  shallow  and  deep  features  via  a  tailored  statistical  fea-
ture  extractor.  In  this  way,  our  blind  SR  network  would  be
adaptive  to  the  changes  of  distortions.  Note  that,  our  method
does  not  require  the  iterative  process  of  generating  the  SR
results  with degradation kernels,  which avoids the accumula-
tion of estimation errors. In addition, there is no need to pro-
vide  ground-truth  kernels  for  supervised  learning  in  our  pro-
posed  method.  To  realize  the  best  trade-off  between  perfor-
mance  and  parameters,  we  also  design  a  compact  blind  SR
network by adopting the up-and-down strategy to make dense
convolution  calculation  in  the  low-dimensional  space.  The
information loss from the reduction of resolution can be com-
pensated  by  a  long  skip  connection.  Compared  to  these  two-
step methods involving kernel estimation, our method is sim-
ple and time-saving.

In  order  to  alleviate  the  over-smooth  result  caused  by  the
pixel loss, we impose the contrastive regularization on the SR
images  by  the  triple  loss.  As  illustrated  in Fig. 1 ,  we  regard
the restored SR prediction generated by the blind SR network
as  the  anchor  and  its  corresponding  HR  image  (i.e.,  ground
truth),  and  the  bicubic  upsampling  result  of  the  input  LR
image  as  the  positive,  and  negative,  respectively.  We  expect
that  the  contrastive  learning  would  pull  the  prediction  closer
to  the  HR  image  and  push  the  prediction  farther  away  from
the  bicubic  upsampling  result  in  the  feature  domain.  There-
fore,  the  contrastive  regularization  constrains  the  target
images into the closed upper and lower bounds by contrastive
learning,  which  benefits  blind  SR  prediction  sharper  and

clearer.  Furthermore,  since it  can be removed for  testing,  the
contrastive regularization improves the performance for blind
image  SR  without  increasing  extra  computation/parameters
during inference.

In summary, our contribution in this paper includes the fol-
lowing  three  aspects.  First,  we  propose  a  novel  CRDNet  to
effectively  produce  high-quality  super-resolved  images  by
contrastive  regularization  and  compact  distortion-specific  SR
network.  Our  CRDNet  realizes  the  best  parameter-perfor-
mance  trade-off,  compared  to  the  state-of-the-art  methods.
Second,  we  propose  a  novel  contrastive  regularization  with-
out  extra  computation  to  generate  more  satisfactory  results.
Third,  the  extracted  global  prior  could  capture  the  nature  of
degradation  to  make  the  SR  network  sensitive  to  the  distor-
tion, which further improves the performance of the network.  

II.  Related Work
  

A.  Super-Resolution for Bicubic Downsampling
With  the  progress  of  deep  learning  technology,  learning-

based algorithms have dominated the SR field because of the
outstanding  performance.  Usually,  learning-based  SR  meth-
ods train on plenty of paired HR and LR images that are diffi-
cult  to  acquire.  Therefore,  previous  works  predefined  the
degradation progress as bicubic interpolation to synthesize LR
images  from  corresponding  HR  images.  In  this  way,  Dong
et al. [1] pioneered three convolutional layers to solve the SR
problem successfully, which achieved better performance than
traditional SR methods. After that, many strategies have been
proposed  to  design  sophisticated  networks  for  the  image  SR
task,  such  as  residual  learning  [2]–[4],  attention  mechanism
[8],  [16],  and  generative  adversarial  network  [17],  [18].
Besides, some works were devoted to exploring efficient mod-
els  to  reduce  the  computational  cost  and  time.  Hui et  al. [7]
proposed  a  novel  information  distillation  network  for  real-
time reconstruction. Lan et al. [19], [20] integrated multiscale
correlation  learning  and  nonlocal  operations  to  enhance  the
representational  capability  with  a  reasonable  number  of
parameters.
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Fig. 1.     The whole framework of our proposed method.
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Although the aforementioned methods have obtained remar-
kable  quantitative  or  qualitative  performance  under  the  bicu-
bic downsampling assumption, it is still difficult for SR meth-
ods to be applied in real scenarios. Since the real degradation
processes are usually unknown and more complicated than the
bicubic  interpolation,  there  exists  a  domain  gap  between  the
real world and synthesized data. Therefore, when SR methods
designed  for  bicubic  downsampling  are  applied  to  real  data,
they inevitably give less pleasing results [8], [21].  

B.  Super-Resolution for Multiple Degradations
To cope with  various  degradations,  some methods recently

work  on  multiple  degradations  to  solve  the  non-blind  SR
problem. Zhang et al. [22] first concatenated degradation map
with  the  LR  image  as  prior  inputs  to  generate  the  SR  result
correlated to  the real  blur  kernel  and noise level.  Inspired by
zero-shot  learning,  Shocher et  al. [23 ]  constructed  a  small
image-specific CNN that is optimized in test phase to exploit
the  internal  recurrence  information  of  a  neural  image.  To
reduce  the  number  of  iterations,  a  meta-learning  strategy  is
utilized  in  MZSR [24]  for  making  the  network  adaptive  to  a
specific degradation within a few steps. Recently, Zhang et al.
[25] interpreted the SR problem as maximum a posteriori esti-
mation (MAP) optimization and alternately solved a data sub-
problem and a prior sub-problem by an unfolding SR network.
To enhance off-the-shelf deep SR network, Hussein et al. [26]
utilized a closed-form filter to correct an LR input in line with
the  one  produced  by  bicubic  degradation.  Zhou et  al. [27]
designed a general framework to exploit scale-related features
among the multiple tasks.  Although important advances have
been  achieved  by  these  SR  methods,  as  pointed  out  in  [12],
the SR results of the aforementioned methods are sensitive to
the provided blur kernel. When the input kernel deviates from
the  predefined  distributions,  none  of  these  multiple  degrada-
tion methods could live up to our expectations.  

C.  Blind Super-Resolution
Since  the  degradation  is  regarded as  a  significant  input  for

the non-blind SR methods, early, previous solutions for blind
SR  naturally  combined  a  kernel-estimation  algorithm  with  a
non-blind SR method. As a result, the kernel prediction task is
critical for blind SR. Michaeli and Irani [28] pioneered to esti-
mate  the  blur  kernel  by  exploring  the  internal  patch  recur-
rence.  In  KernelGAN  [13],  the  blur  kernel  is  explicitly
extracted  from a  generative  network  and  the  discriminator  is
used to verify whether the distribution of generated LR image
is  consistent  with  the  original  input.  By introducing the  flow
prior for kernel learning, Liang et al. [29] design an invertible
mapping to generate reasonable kernel initialization. Although
combining  the  advanced  kernel  estimation  method  with  the
non-blind  SR  method  could  obtain  better  SR  results,  the  SR
performance highly relies on degradation estimation. Thereby,
the  errors  in  kernel  estimation  could  inevitably  cause  unex-
pected artifacts to the SR predictions. To overcome the defect,
Gu et  al. [12]  developed an  iterative  kernel  correction  (IKC)
method  to  correct  the  estimated  kernel  by  observing  gener-
ated SR results.  Luo et al. [14] unfolded the alternating opti-
mization (DAN) for predicting the degradation the SR image

simultaneously. In [30], a degradation representation has been
learned for blind SR in an unsupervised way. However, degra-
dation estimation could cause extra computational load for the
SR task and the accumulative estimation error would deterio-
rate  the  reconstruction  performance.  Instead,  our  proposed
method refrains the kernel estimation and resorts to extracting
the global prior to capture the changes of degradation.  

III.  Problem Formulation

According to (1), given the LR image y, there are two vari-
ables that need to be determined. Thereby, existing end-to-end
blind SR methods recover clear images by minimizing image
reconstruction loss, kernel estimation loss with the regulariza-
tion term simultaneously, which can be formulated as
 

argmin
θ1,θ2
∥x−H(y;θ1)∥+ ∥k−M(y;θ2)∥+λϕ(H(y;θ1)) (2)

H(·;θ1) θ1 M(·;θ2)
θ2 ϕ(·)

where x is the corresponding HR image, k is the ground-truth
kernel,  is the SR network with parameter ,  is
the  kernel  prediction  network  with  parameter ,  and  is
regularization term with a penalty parameter λ. Consequently,
previous  methods  adopt  the  two-step  or  alternative  strategies
to optimize (2)  and the introduction of  the blur  kernel  would
inevitably cause the heaver computational complexity.

In  our  method,  refraining  from  an  explicit  blur  kernel,  we
customize global prior information to capture the characteriza-
tion of distortion, which can be expressed as
 

argmin
θ1
∥x−H(y,z;θ1)∥+λϕ(H(y,z;θ1)) (3)

in  which z  is  the  global  prior  captured  by  our  global  feature
extractor.  Besides,  differently  from  the  previous  regulariza-
tion,  we  propose  a  contrastive  regularization  to  improve  the
quality of the reconstructed images.  

IV.  Our Proposed Method

Our blind SR network consists of a global feature extractor
and a distortion-specific SR network, as shown in Fig. 1. First,
the LR input is sent into the global feature extractor to obtain
a  global  prior.  Differently  from  the  estimated  kernel  itera-
tively generated with SR result, the global prior is expected to
capture the distortion-oriented properties without being super-
vised by the ground truth kernel  [12],  [14].  Then,  this  global
prior is incorporated into the distortion-specific SR network to
produce  the  super-resolved  result,  which  makes  our  method
adaptive to the changes of distortions.  

A.  Global Prior
Reviewing the visual science literature, the regularity of nat-

ural  scene  statistics  has  been  well  established  in  the  spatial
domain as well as the wavelet domain [31], [32]. As claimed
in [15], the presence of distortions would influence the statisti-
cal  properties  of  natural  images  and  quantifying  naturalness
will  make  it  possible  to  capture  the  distortion  properties.
Therefore, we use the proposed mean subtracted contrast nor-
malized (MSCN) coefficients in [15] to capture features corre-
lated well with distortions.

To calculate MSCN coefficients, we first obtain locally nor-
malized  luminance  via  local  mean  subtraction  and  divisive
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I(i, j)
normalization, which has a decorrelating effect. Such an oper-
ation may be applied to a given intensity image  to pro-
duce
 

Î(i, j) =
I(i, j)−µ(i, j)
σ(i, j)+C

(4)

µ(i, j) σ(i, j)
C = 1

D1 D2

where  is the local mean,  is the local variance and
.  While  MSCN  coefficients  are  more  homogenous  for

pristine images, the signs of adjacent coefficients also present
a regular structure, which is disturbed by the distortion. Refer-
ring to [15], we also model this structure by the empirical dis-
tributions of  pairwise products  of  neighboring MSCN coeffi-
cients along four directions: horizontal (H), vertical (V), main-
diagonal  ( )  and  secondary-diagonal  ( ),  as  illustrated  in
Fig. 2. Specifically,
 

H(i, j) = Î(i, j)Î(i, j+1)

V(i, j) = Î(i, j)Î(i+1, j)

D1(i, j) = Î(i, j)Î(i+1, j+1)

D1(i, j) = Î(i, j)Î(i+1, j+1).

(5)

However,  instead  of  modeling  distorted  image  statistics  by

[Î,H,
V,D1,D2]
Gaussian  distribution,  we  concatenate  these  features  (

)  and  feed  them  into  the  neural  network  to  extract
more  compact  vectors  to  be  well  correlated  with  distortions.
As illustrated in Fig. 2, these features are sent into five spatial
pyramid  pooling  layers  (SPP),  following  by  three  fully-con-
nected layers to extract global statistical properties, which can
be expressed as:
 

z = E([Î,H,V,D1,D2]) (6)
in which E represents the operation of these layers. The global
prior is expected to capture the character of the degradation to
make  the  SR  network  distortion-specific.  This  global  feature
extractor  is  trained together  with the blind SR network.  As a
result,  the  generated  global  feature z  would  be  well  adapted
for the blind SR task.  

B.  Distortion-Specific SR Network
Incorporated  with  prior  information  extracted  from  the

MSCN  coefficients,  a  distortion-specific  SR  network  is
designed  to  super-resolve  the  low-resolution  input,  as  illus-
trated in Fig. 3. In the feature extraction phase, the distortion-
specific module (DS module) is deployed as the building part
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Fig. 2.     The detailed operations in global feature extractor.
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Fig. 3.     The whole structure of the distortion-specific SR network at the scale factor 4.
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and the up-and-down sampling strategy is involved in dealing
with the complex degradation. Our CRDNet network consists
of  three  DS  modules,  with  each  module  comprising  several
DS blocks.  In general,  most  of  the existing SR methods tend
to  extract  features  at  the  original  resolution  to  avoid  loss  of
information,  whereas,  considering  the  complicated  degrada-
tion,  we  engage  the  up-and-down  sampling  strategy  to  pro-
duce clearer results. After the first DS module, we downsam-
ple the features with the scale of 2, reducing the resolution in
half, which can be formulated as
 

F2 =D(HDS (F1)) (7)
F1

HDS D

F2

F3

where  denotes the input feature of the first DS module with
the operation .  represents the downsampling operation
that  could  reduce  the  influence  of  noise  and  make  the  net-
work  obtain  a  larger  receptive  field.  Thus,  the  second  DS
module  takes  as  the  input,  performing  in  a  lower  resolu-
tion. Then, we upsample the features to the original resolution
to generate the input feature  of the last DS module
 

F3 =U(HDS (F2)) (8)
U

FR

where  represents  the upsampling operation.  Subsequently,
the  third  DS  module  conducts  at  the  original  resolution.  The
residual learning is used for alleviating the information loss to
produce the  feature  ( )  before  reconstruction,  which can be
expressed as
 

FR =HDS (F3)+F1. (9)
The  up-and-down  strategy  is  implemented  by  the  shuffle

pixel layer [33] and its inverse version.
Within each DS module, we embed the global prior feature

z into each DS block. Since the MSCN maps exhibit a largely
homogeneous  appearance  with  a  few  low-energy  residual
object  boundaries  [15],  we  expect  that  prior  feature z  could
capture  statistical  property  changes  made  by  the  presence  of
distortion. Therefore, integrated with the prior feature, the SR
network could be aware of the distortion, adaptively handling
various degradation.

f n
in

Specifically, taking the n-th DS block for example, we first
deploy a simplified residual block for the input feature 
 

f n
mid =Hres( f n

in) (10)
Hresin which  expresses the simplified residual block to pro-

duce  the  middle  feature  in  the  DS  block.  Considering  the
global  nature  of  the  prior  features  extracted  from the  MSCN
coefficients, we integrate the prior features into the network in
the form of  a  convolution kernel.  According to  different  pic-
tures corresponding to different priors, the depth-wise convo-
lution followed by the 1 × 1 convolution is used to make the
features  image-specific  and  local  residual  is  also  added  back
to ease the learning difficulty, which is
 

f n
out =H1×1(Hd−w( f n

mid))+ f n
mid (11)

Hd−w H1×1

1×1
where  and   represent  the  depth-wise  convolution
and the  convolution, respectively.  

C.  Contrastive Regularization
Most existing blind SR algorithms based on CNN are dedi-

cated  to  minimizing  the  pixel-level  reconstruction  loss,  such

L1 L2as  and . Consequently, the reconstruction results tend to
be over-smooth,  and thus,  we try to impose an extra regular-
ization on the SR results to alleviate the issue.

Inspired by contrastive learning, our method introduces con-
trastive  regularization  to  help  improve  the  quality  of  the
reconstructed  image.  Generally,  contrastive  learning  attempts
to  acquire  a  representation  that  distinguishes  the  target  sam-
ple  from  other  samples.  Specifically,  contrastive  learning
expects that the target sample in the representation space can
be  as  close  as  possible  to  the  positive  sample  and  far  away
from  the  negative  sample.  Therefore,  for  the  blind  SR  prob-
lem, there are two aspects that need to be considered: how to
construct positive and negative samples and how to define the
metric space. There is no doubt that the HR image should be
the  positive  sample  that  the  reconstruction  result  needs  to  be
close  to.  In  theory,  other  different  images  can  be  treated  as
negative  samples.  However,  in  order  to  temper  the  over-
smoothness of the reconstructed image instead of making the
reconstruction  result  distinguishable,  we  regard  the  result  of
bicubic  upsampling  as  the  negative  sample.  Since  the  image
SR task early attempts to achieve the inverse process of bicu-
bic  downsampling,  the  result  of  bicubic  upsampling  can  be
regarded as the hardest sample to some extent. In our method,
owing to  the  superiority  of  the  perceptual  loss  defined in  the
VGG  feature  representation,  we  project  the  samples  to  the
latent space through the VGG network and constrain the dis-
tance  of  these  samples  in  the  feature  space,  which is  investi-
gated  to  regularize  the  network  learn  better  feature  space  in
[34] and [35]. Thus, the objective of our blind SR network can
be represented as
 

argmin
θ1
∥x−H(y,z;θ1)∥+λϕ(G(x),G(H(y,z;θ1)),G(b)) (12)

L1
L2

H(y,z;θ1)

where the first term is the reconstruction loss for constraining
the  recovered  image  and  its  corresponding  HR  image  in  the
pixel  level.  We  employ  loss,  since  it  could  obtain  better
performance compared to  loss [5]. The second term is the
contrastive regularization among HR image y, restored image

, and the bicubic upsampling result b under the same
latent  feature  space,  which  works  on  pulling  the  restored
image to its ground-truth image and pushing the restored away
to the bicubic upsampling result. λ is a hyperparameter to bal-
ance  the  reconstruction  term  and  contrastive  regularization.
From  the  perspective  of  classification,  considering  the  target
sample, the positive and negative examples belong to the same
category, so we employ the triple loss here. It is required that
for the same class of positive and negative examples, the tar-
get  sample should be at  least  away from the negative sample
than  the  positive  sample  above  a  threshold.  Therefore,  the
overall loss function can be formulated in detail as
 

argmin
θ1
∥x− x̂∥1+λmax

(
d(G(x),G(x̂))

−d(G(x),G(b))+τ,0
)

(13)
x̂

x̂ = H(y,z;θ1) d(·, ·) L2
where  represents  the  restored  image  in  brief,  that  is,

 and  is  the  distance between two sam-
ples.  Adopting  the  bicubic  upsampling  result  as  the  negative
to  constrain  the  solution  space,  the  prediction  of  our  method
could be sharper and clearer as well as perceptual superior.  
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D.  Implementation Details

8×8

λ = 0.3

48×48

β1 β2 0.9 0.999
1×10−4

In  our  CRDNet  network,  the  convolutional  layers  for  fea-
ture extraction are equipped with 64 filters, except for the last
layer,  since  the  output  channel  number  of  the  last  layer  is
three.  The  kernel  size  of  the  depth-wise  convolution  is .
To  keep  the  size  of  the  feature  map  unchanged,  the  zero-
padding strategy is used for these convolutional layers. For the
upsampler employed in our network, we use the shuffle pixel
layer proposed in [33] and the downsampler is the inverse ver-
sion of the shuffle pixel layer. For the loss function, we empir-
ically  set .  Our  CRDNet  method  is  implemented  by
PyTorch  and  with  one  NVIDIA  TITAN  RTX  GPU.  For  the
training  phase,  we  choose  a  mini-batch  size  of  32  with  ran-
dom  rotation  augmentation.  The  LR  patches  are  of 
sizes. The model is trained by Adam optimizer with exponen-
tial decay rates  and  equal to  and , respectively.
The  initial  learning  rate  is  set  to  and  decays  by  10
times every 150 epoches while the total epoch is 600.  

V.  Experiments and Results

To  fully  investigate  the  proposed  method,  we  conduct
extensive experiments on both synthetic and real images. For
synthetic  images,  we  evaluate  quantitative  and  qualitative
results  under different settings and perform an ablation study
to analyze the proposed method. For real images, we provide a
qualitative comparison to show the advantage of our method.  

A.   Experiments  on  Noise-Free  Degradations  With  Isotropic
Gaussian Kernels

21×21

We  first  perform  the  experiments  on  noise-free  degrada-
tions with isotropic Gaussian kernels following [12].  Follow-
ing the settings in [12], we collect 800 images in DIV2K [36]
and 2650  training  images  in  Flickr2K  [37]  for  the  training
dataset,  and  evaluate  the  result  on  four  benchmark  datasets
including Set5 [38], Set14 [39], BSD100 [40], Urban100 [41]
and Manga109 [42]. We synthesized LR images according to
(1)  for  training  and  testing.  In  this  setting,  the  size  of  the
Gaussian  kernel  is  set  as .  During  training,  the  kernel

[0.2,2.0] [0.2,4.0]width is uniformly sampled in  and  for scale
factors  2  and  4  respectively.  For  testing,  the  HR  images  are
first processed by the selected blur kernels at two widths and
then directly downsampled to form synthetic test images. We
compare  our  CRDNet  with  several  state-of-the-art  SR  meth-
ods, including Bicubic, RCAN [16], IKC [12], DAN [14] and
DASR [30]. RCAN is a state-of-the-art (SOTA) SISR method
specially  designed  for  bicubic  degradation.  IKC  [12]  is  the
representative two-step SR method that only considers degra-
dations with isotropic Gaussian kernels. DAN [14] and DASR
[22]  are  the  SOTA  blind  SR  method  considering  both
isotropic/anisotropic Gaussian kernels and noises.

Quantitative results in terms of PSNR and SSIM are exhib-
ited in Table I while visualization results are shown in Fig. 4.
It can be noticed from Table I that when the test degradations
are  different  from  the  pre-defined  one,  the  RCAN  method
does  not  achieve  considerable  performance  even  if  it  per-
forms well in bicubic-downsampling settings. Considering the
estimation  of  SR  image  and  degradation  with  the  iterative
scheme,  IKC  and  DAN  have  achieved  better  performance.
However,  according  to  the  testing  time  provided  in Table II,
they  are  time-consuming  due  to  the  iterations.  Although  the
degradation is not accurately estimated in DASR, the involved
degradation representation greatly increases the complexity of
the  network,  which  can  be  seen  in Table II .  Based  on  the
experimental  results,  equipped  with  global  prior  and  con-
trastive  learning,  the  proposed  CRDNet  outperforms  the  oth-
ers  in  terms  of  PSNR  and  SSIM  values.  In  addition,  our
method  is  quite  stable  at  different  kernel  widths,  which  is
demonstrated in Fig. 5. Although the RCAN method achieves
better  results  when  the  kernel  width  is  extremely  small,  the
performance  of  our  proposed  CRDNet  shows  a  more  stable
trend.  This  is  mainly  because  we  embed  the  global  prior  in
both  low-level  and  high-level  features  to  make  the  network
well  adaptive  for  different  degradations.  In  the  meanwhile,
contrastive  learning  with  the  bicubic  estimation  could  pro-
mote our method to be perceptually superior.

Visualization  reconstructed  results  generated  by  different

 

TABLE I 

Quantitative Comparison With SOTA SR Methods on Noise-Free Degradations With Isotropic Gaussian Kernels. The Best
Results are Indicated in Bold

Method Scale Set5 Set14 BSD100 Urban100 Manga109

Kernel width 0.6 1.8 0.6 1.8 0.6 1.8 0.6 1.8 0.6 1.8

Bicubic 32.66/0.9167 28.25/0.8183 29.53/0.8471 26.10/0.7153 28.88/0.8171 26.06/0.6795 26.17/0.8152 23.22/0.6724 29.62/0.9183 25.00/0.8030

RCAN 35.91/0.9505 28.50/0.8269 32.31/0.9018 26.32/0.7264 31.15/0.8780 26.25/0.6906 29.80/0.9039 23.44/0.6857 34.68/0.9657 25.30/0.8146

IKC ×2 37.41/0.9579 34.66/0.9285 33.42/0.9136 30.67/0.8556 31.92/0.8918 29.69/0.8238 30.91/0.9143 27.03/0.8290 37.75/0.9750 31.76/0.9336

DAN 37.82/0.9584 35.78/0.9380 33.33/0.9129 31.82/0.8745 32.06/0.8947 30.52/0.8527 31.14/0.9157 29.04/0.8756 38.09/0.9757 35.28/0.9580

DASR 37.43/0.9558 35.49/0.9377 32.95/0.9059 31.61/0.8717 31.79/0.8875 30.58/0.8507 30.72/0.9098 29.02/0.8748 37.72/0.9751 34.84/0.9347

CRDNet 38.13/0.9590 36.04/0.9392 33.64/0.9149 32.07/0.8766 32.27/0.8976 30.82/0.8586 31.35/0.9186 29.27/0.8784 38.14/0.9762 35.30/0.9582

Kernel width 1.2 3.6 1.2 3.6 1.2 3.6 1.2 3.6 1.2 3.6

Bicubic 27.69/0.7904 24.44/0.6774 25.59/0.6820 23.24/0.5811 25.58/0.6461 23.80/0.5570 22.72/0.6341 20.83/0.5305 24.27/0.7661 21.63/0.6668

RCAN 30.26/0.8636 24.66/0.6883 27.47/0.7512 23.41/0.5896 26.89/0.7067 23.93/0.5640 24.71/0.7399 20.98/0.5400 27.49/0.8640 21.83/0.6767

IKC ×4 31.75/0.8870 30.26/0.8585 28.37/0.7709 26.63/0.7100 27.42/0.7240 26.41/0.6854 25.62/0.7676 24.07/0.7024 29.41/0.8921 26.61/0.8265

DAN 31.97/0.8920 30.94/0.8663 28.44/0.7714 27.68/0.7378 27.52/0.7289 26.95/0.6956 25.63/0.7678 24.98/0.7320 30.75/0.9101 29.27/0.8824

CRDNet 32.22/0.8936 31.62/0.8874 28.65/0.7800 28.12/0.7680 27.65/0.7348 27.43/0.7310 26.20/0.7869 25.08/0.7398 30.82/0.9118 29.31/0.8829
 

WANG et al.: CONTRASTIVE LEARNING FOR BLIND SR VIA A DISTORTION-SPECIFIC NETWORK 83 

Authorized licensed use limited to: Wuhan University. Downloaded on July 14,2023 at 08:18:51 UTC from IEEE Xplore.  Restrictions apply. 



SR  algorithms  are  displayed  in Fig. 4  for  comparison.  We
highlight  some  small  areas  in  red  boxes.  It  is  obvious  that
since  RCAN  method  is  simply  optimized  on  the  bicubic
downsampling,  this  method fails  to  produce clear  results  and
behaves  badly  as  the  Bicubic  method.  IKC and  DAN cannot
restore more details and the edges in their estimations are still
blurry  due  to  the  accumulated  estimation  error.  Compared  to
other  methods,  our  CRDNet  can  recover  sharper  edges  with
pleasable perceptual quality.  

B.   Experiments  on  General  Degradations  With  Anisotropic
Gaussian Kernels and Noises

N(0,Σ)

λ1, λ2−U(0.2,4)
θ−U(0,π)

[0,25]

We  also  train  our  network  on  more  general  degradations
with anisotropic Gaussian kernels and noises. Following [30],
anisotropic  Gaussian kernels  are  characterized by a  Gaussian
probability density function  (with zero mean and vary-
ing  covariance  matrix  Σ).  The  covariance  matrix  Σ  is  deter-
mined  by  two  random  eigenvalues  and  a
random rotation angle .  The range of noise level is
set  to .  For  testing,  we  use  the  benchmark  dataset

DIV2KRK that is used in [13]. We deploy 7 typical blur ker-
nels  and  3  different  noise  levels  for  performance  evaluation.
To handle the noise images using RCAN, we first denoise the
LR  images  by  using  DnCNN  [43]  (an  SOTA  denoising
method)  under  blind  settings.  We  also  utilize  the  method  in
[44]  and  the  kernelGAN [30]  to  estimate  the  noise  level  and
the  degradation  kernel  for  the  SOTA  non-blind  SR  method
USRNet  [25]  to  cope  with  more  general  degradations.  Since
the pre-trained model of DAN is trained on anisotropic Gaus-
sian kernels only, we further fine-tuned this model with noises
for a fair comparison. We use the officially released model of
DASR for testing in this setting.

 

HR Bicubic RCAN DANIKC Ours

PSNR/SSIM 24.04/0.6164 24.18/0.6241 28.23/0.8060 28.42/0.8123 29.73/0.8660

PSNR/SSIM 21.69/0.7225 21.81/0.7274 24.45/0.8158 25.34/0.8389 26.26/0.8667

PSNR/SSIM 24.22/0.6817 24.33/0.6862 27.25/0.7840 27.54/0.7945 28.24/0.8370

PSNR/SSIM 29.84/0.8718 30.03/0.8759 34.09/0.9328 34.48/0.9366 35.43/0.9504 
3.6Fig. 4.     Visual comparison of noise-free models achieved on four images from Urban100 for × 4 SR with kernel width : img068, img010, img032, img080.

 

 

TABLE II 

Flops and Testing Time Comparisons With SOTA SR Meth-
ods at the Scale 2

Bicubic RCAN IKC DAN DASR CRDNet (Ours)

109Flops ( ) \ 261.46 80.59 256.45 42.44 33.04
Time (ms) 2.8 162 339 89 48 32
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Fig. 5.     Comparison of SOTA noise-free models on Set14 dataset for × 4 SR
with different kernel widths.
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100
Table III tabulates  the  average  quantitative  performance  of

all  comparing  methods  on  testing  images  in  DIV2KRK
dataset. According to the results, the performance of combina-
tion  models  (DnCNN+RCAN  and  kernelGAN+USRNet)  is
not competitive due to the accumulated reconstruction errors.
As the method is designed for bicubic downsampling, RCAN
generates  relatively  low  results  on  complex  degradations.
Although USRNet can adapt to the complicated degradations,
this  method is  sensitive to degradation estimation.  Therefore,
degradation  estimation  errors  generated  by  the  kernel  and
noise  estimation  method  would  be  magnified  in  USRNet,
resulting in limited SR performance. Although DAN involves
the  kernel  estimation  when  restoring  clear  image  and  thus
achieves  better  results,  it  generates  worse  results  on  higher
noise level. The proposed approach CRDNet consistently out-
performs the other methods in terms of both PSNR and SSIM
as  shown  in Table III .  Compared  to  the  SOTA  blind  SR
method,  our  CRDNet  achieves  the  better  parameter-perfor-
mance trade-off.

To visualize the results, we select one setting in Table III to
show the super-resolved images reconstructed by five compar-
ing  methods.  As  illustrated  in Fig. 6 ,  although  the  combina-
tion of KernelGAN and USRNet can generate slightly sharper
edges  than  DnCNN+RCAN,  it  cause  some  artifacts  in  SR
results.  The  SR  image  of  our  method  is  obviously  much
cleaner and has more reliable details.  

C.  Experiments on Real-World Images
We  further  conduct  experiments  on  real-world  scenes  to

demonstrate the effectiveness of our proposed CRDNet. Since
there are no ground-truth HR images, we only visualize some
predictions  from  compared  methods. Fig. 7  illustrates  the

super-resolved  results  on  real-world  inputs.  The  RCAN  is
employed  as  one  of  the  representative  non-blind  algorithms
for comparison and the combination of kernelGAN and USR-
Net  is  also  included.  The  method  DASR  is  selected  as  the
SOTA blind SR method for comparison. We can observe that
our  CRDNet  could  give  satisfactory  results  with  sharper
details.  Specifically,  the  recovered  letters  in  the  red  box  are
blurry  in  the  result  of  RCAN,  while  the  combination  of  ker-
nelGAN  and  USRNet  tends  to  produce  the  over-smoothed
prediction.  In  comparison,  our  CRDNet  can  produce  sharp
edges without unsatisfying artifacts due to the contrastive reg-
ularization.  

D.  Ablation Studies
To demonstrate the effectiveness of the proposed CRDNet,

we  conduct  an  ablation  study  on  noise-free  degradations  to
analyze  different  elements,  including  global  prior,  up-and-
down strategy and contrastive learning. The results are evalu-
ated on the Set14 dataset at the scale 4.

1) Global Prior: We expect the extracted global prior could
capture the changes made by the distortion. Thus, integrating
the global prior into our model, the blind SR network could be
aware  of  distortion.  According  to Table IV ,  the  global  prior
alone brings little gain to the baseline network. To investigate
global statistical prior thoroughly, we remove this part in our
network and only use the blind SR network, the performance
of  which  is  listed  in  the  fourth  row of Table IV.  Clearly,  the
performance  suffers  from  severe  decreases  since  the  distor-
tion is not involved in the feature extraction. In order to better
display the extracted global priors, we visualize the extracted
global  statistical  priors  in Fig. 8  with  different  kernel  width
settings for isotropic Gaussian kernels. It can be observed that

 

TABLE III 

Quantitative Comparison With SOTA SR Methods on Noisy Degradations With Anisotropic Gaussian Kernels. The Best
Results are Indicated in Bold

Method Param Noise

Blur kernel

DnCNN+RCAN 650K+15.2M

0 27.65/0.7660 28.76/0.7968 26.08/0.7101 26.28/0.7195 26.16/0.7144 25.48/0.6853 25.41/0.6825

5 27.13/0.7398 27.97/0.7632 25.82/0.6946 25.99/0.7028 25.89/0.6982 25.28/0.6747 25.22/0.6724

15 26.39/0.7122 27.01/0.7296 25.33/0.6762 25.48/0.6823 25.39/0.6785 24.87/0.6603 24.83/0.6588

kernelGAN+USRNet 193K+17M

0 27.38/0.7545 28.36/0.7815 25.66/0.7033 26.43/0.7230 26.23/0.7166 25.45/0.6836 25.30/0.6831

5 26.82/0.7355 28.07/0.7723 25.76/0.6950 25.95/0.7036 25.92/0.7022 25.25/0.7650 25.31/0.6753

15 26.65/0.7216 27.26/0.7405 25.45/0.6805 25.46/0.6831 25.49/0.6821 24.90/0.6623 24.92/0.6614

DAN 1.95M

0 28.05/0.7816 29.54/0.8197 27.41/0.7598 26.82/0.7416 26.91/0.7442 28.05/0.7723 29.49/0.8047

5 27.87/0.7528 28.50/0.7796 26.60/0.7426 26.76/0.7320 26.66/0.7270 26.47/0.7104 26.22/0.7279

15 26.84/0.7249 27.47/0.7426 25.59/0.6953 25.67/0.7048 25.60/0.6937 25.26/0.6734 25.23/0.6752

DASR 5.98M

0 29.39/0.8149 29.59/0.8160 28.92/0.7953 28.94/0.7949 28.93/0.7942 28.72/0.7882 28.71/0.7895

5 28.25/0.7760 28.76/0.7871 27.49/0.7447 27.58/0.7467 27.52/0.7438 27.09/0.7279 27.09/0.7287

15 27.09/0.7380 27.55/0.7495 26.34/0.7074 26.43/0.7109 26.37/0.7079 25.96/0.6961 25.94/0.6910

CRDNet 2.8M

0 29.46/0.8202 29.75/0.8225 29.15/0.7982 29.24/0.8039 29.11/0.7964 28.89/0.7945 28.82/0.8009

5 28.30/0.7791 28.87/0.7927 27.60/0.7452 27.75/0.7513 27.56/0.7472 27.13/0.7341 27.12/0.7340

15 27.11/0.7396 27.61/0.7514 26.38/0.7090 26.55/0.7148 26.45/0.7114 26.06/0.6976 26.05/0.6942
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the  prior  information  that  we  extracted  has  a  strong  correla-
tion  with  degradation.  For  the  anisotropic  Gaussian  kernel
demonstrated  in Fig. 9 ,  the  extracted  priors  are  not  always
consistent  with  the  ground  truth  since  LR  inputs  have  inter-
fered  with  noise.  In  this  case,  our  extracted  distortion-ori-
ented prior could promote the SR network to be well adapted
to various degradation.

2)  Up-and-Down  Strategy: In  our  SR  network,  we  deploy
the up-and-down sampling modules to deal with the complex
degradations,  and meanwhile,  this  strategy would enlarge the
receptive  field  of  the  network.  First,  we  use  this  strategy

0.12

alone,  and  we  can  see  that  the  up-and-down strategy  has  the
greatest contribution to the baseline. Then, we remove the up-
and-down  sampling  modules  in  our  distortion-specific  net-
work  to  confirm their  effects.  As  illustrated  in Table IV ,  our
CRDNet  benefits  from  the  up-and-down  strategy  which  sig-
nificantly improves the performance with an increase of 
dB  PSNR.  Thus,  coupling  with  the  global  prior,  the  up-and-
down  sampling  module  is  an  important  part  of  our  proposed
method to cope with various degradations.

3)  Contrastive  Regularization: Contrastive  learning  is
employed to generate discriminative SR images, in which the

 

HR DnCNN+RCA kernelGAN+USRNet DAN DASR Ours

PSNR/SSIM 29.51/0.8642 29.47/0.8645 29.99/0.8691 31.32/0.8845 32.16/0.8914

PSNR/SSIM 24.66/0.7397 24.85/0.7434 24.77/0.7434 26.86/0.8122 27.19/0.8257

PSNR/SSIM 16.26/0.5962 16.42/0.6030 16.47/0.6153 17.06/0.6758 17.38/0.7008

PSNR/SSIM 28.01/0.7877 28.32/0.7963 28.24/0.7923 29.33/0.8138 29.63/0.8236 
θ = 0.125 λ1 = 4.0 λ2 = 2.0Fig. 6.     Visual comparison of × 4 SR models achieved on four images from DIV2KRK for , ,  with noise level 5: img33, img92,

img28, img94.
 

 

RCAN KernelGAN+USRNet DASR CRDNet (ours) 
Fig. 7.     Visual results on real-world image for × 4 SR.
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bicubic  interpolation  results  serve  as  negative  samples.  We
evaluate  the effect  of  contrastive regularization with or  with-
out  negative  samples.  Discarding  contrastive  regularization
represents  that  only  positive  ones  are  applied  for  training,
which  is  similar  to  perceptual  loss  [17].  Compared  to  other
parts, adding contrastive regularization in our model achieves
relatively fewer gains in PSNR (+0.05 dB) while higher gains
in  SSIM  (+0.0024).  Our  proposed  CRDNet  deploys  the
designed  contrastive  regularization  with  both  negative  and
positive  samples  during  training  phrase,  which  could  temper
the  over-smoothness  of  the  reconstructed  image.  In Fig. 10,
we show that the network trained without the contrastive regu-
larization (w/o CR) generates  over-smoothed SR results  with
some  unpleased  artifacts.  In  contrast,  the  SR  images  recon-
structed by the proposed algorithm (our CRDNet) contain sat-
isfactory clean and sharp details.  

VI.  Discussions

We  further  explore  more  negative  samples  on  contrastive
regularization, which is known to benefit contrastive learning.
However,  the  negative  sample  mining  is  still  an  open  and
challenging problem. In our method, we first use the complex
degradation  to  downsample  the  high-resolution  images,  and

then  upsample  the  degraded  images  by  different  methods  to
generate  negative  samples.  Intuitively,  the  negative  example
generated  by  upsampling  the  low-resolution  input  is  harder
than  the  high-resolution  image  with  different  degradations.
Thereby,  we focus  on exploiting different  even mixed super-
resolution techniques to generate more negative examples.  In
detail, we exploit other interpolation methods (Bilinear, Near-
est  Neighbor)  and  existing  blind  SR  methods  (RCAN,  IKC,
DAN, ESRGAN) to generate more negative samples, and ran-
domly  select  a  certain  number  of  negative  samples  for  the
contrastive  learning.  Unfortunately,  we  consider  at  most  5
negative  samples,  because  of  the  limited  GPU  memory  size.
Table V demonstrates  the  PSNR  and  SSIM  results  produced
by different numbers of negative testing on the Set5 dataset.
 

TABLE V 

The PSNR and SSIM Results of Different Numbers of
Negatives Testing on the Set5 Dataset

Negative number PSNR SSIM

1 32.22 0.8936

3 32.31 0.8947

5 32.48 0.8964
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As  shown  in Table V ,  adding  more  negative  samples  into
contrastive  regularization  achieves  better  performance.  We
conjecture  that  for  negative  samples,  the  more  negative  sam-
ples,  the  farther  away  from  the  worse  pattern  in  the  blurry
images.  Thus,  our  method with 5 negatives achieves the best
performance.  However,  it  takes  a  longer  training  time  when
increasing the number of negative samples. For example, our
CRDNet with 5 negatives takes about  hours in total (i.e.,
× 2) for training, compared to a total of 14 hours at the rate of

.  Therefore,  we  still  choose  a  single  negative  sample  for
our compact network.  

VII.  Conclusions

In  this  paper,  we  proposed  a  novel  CRDNet  for  blind  SR,
which  consists  of  contrastive  regularization  and  distortion-
specific  network with global  prior.  Contrastive regularization
is  built  upon  contrastive  learning  to  ensure  that  the  restored
image is  pulled closer  to the HR image and pushed far  away
from  the  blurry  image  in  representation  space.  Instead  of
explicitly estimating the distortion, we extract the global prior
from  the  MSCN  coefficients  to  capture  the  character  of  the
degradation. Embedding the global prior into the SR network

 

TABLE IV 

Ablation Study on Noise-Free Degradations Evaluating on
Set14 Dataset at Scale 4

Global prior Up-and-down Contr. regular. PSNR/SSIM

Baseline 25.17 / 0.6359

√ 25.24 / 0.6366

√ 25.42 / 0.6513

√ 25.31 / 0.6459

√ √ 25.54 / 0.6643

√ √ 25.59 / 0.6628

√ √ 25.52 / 0.6646

√ √ √ 25.64 / 0.6652
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Fig. 8.     Visualization of global prior extracted in the proposed network con-
ducted with different kernel widths.
 

 

 
Fig. 9.     Visualization of global prior extracted in the proposed network with
anisotropic Gaussian kernels.
 

 

Baboon Bicubic w/o CR Ours

 
Fig. 10.     Contribution  of  contrastive  regularization  (CR)  in  the  proposed
network conducted on image “Baboon” in Set14.
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makes our method well adapted to complex degradations. The
compact  distortion-specific  network  based  on  the  up-and-
down benefits from removing noise and expanding the recep-
tive  field  to  improve  the  network’s  representation  capability.
We  have  comprehensively  evaluated  the  performance  of
CRDNet  on synthetic  and real-world  datasets,  which demon-
strates the superiority of our proposed method.
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