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Abstract— Although natural image super-resolution methods
have achieved impressive performance, single hyperspectral
image super-resolution still remains a challenge due to the
high dimensionality. In recent years, many single hyperspectral
image super-resolution methods adopted the group-convolution
strategy to design the network for reducing the computational
burden. However, these methods still process all spectral bands
at once during the deep feature extraction and reconstruction,
which increases the difficulty of fully exploring the inherent data
characteristic of hyperspectral images. Moreover, the advanced
group-based methods make insufficient exploitation of comple-
mentary information contained in different bands, resulting in
limited reconstruction performance. In this article, we propose
a novel group-based single hyperspectral image super-resolution
method termed group-based embedding learning and integration
network (GELIN) to reconstruct high-resolution images in a
group-by-group manner, which alleviates the difficulty of feature
extraction and reconstruction for hyperspectral images. Specifi-
cally, a spatial-spectral embedding learning module is designed
to extract rewarding spatial details and explore the correlations
among spectra simultaneously. Considering the high similarity
among different bands, a neighboring group integration module
is proposed to fully exploit the complementary information
contained in neighboring image groups to recover missing details
in the target image group. Experimental results on both natural
and remote sensing hyperspectral datasets demonstrate that the
proposed method is superior to other state-of-the-art methods
both visually and metrically.

Index Terms— Group convolution, hyperspectral image, neigh-
boring groups, super-resolution.

I. INTRODUCTION

YPERSPECTRAL images contain information of the
same scene across different bands over a certain electro-
magnetic spectrum [1]. Each pixel in the hyperspectral image
is dispersed to form tens or even hundreds of continuous
spectral bands for rich and detailed spectral information, which
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reflects the subtle spectral properties of different materials.
Attributed to the powerful diagnostic capability, hyperspectral
images have been extensively used in many fields, such as
mineral exploration [2], medical diagnosis [3], and plant
detection [4]. However, in order to obtain hyperspectral images
with high spectral resolution, the spatial resolution usually falls
victim. The narrow and dense spectral bands in hyperspectral
imaging systems limit the amount of incident energy reaching
the sensor, resulting in relatively low spatial resolution of
images. Since upgrading hardware technology is difficult and
time-consuming, how to increase the spatial resolution of
hyperspectral images still remains a challenge.

Super-resolution, as a postprocessing technique that infers
the high-resolution (HR) image from its low-resolution (LR)
version [5], could enhance the spatial resolution of hyper-
spectral images without hardware modification. Depending on
whether auxiliary information is needed, hyperspectral image
super-resolution is divided into two categories: fusion-based
hyperspectral image super-resolution and single-image super-
resolution. For the former, the LR hyperspectral image is fused
with the HR auxiliary image to enhance the spatial reso-
Iution. Relying on Bayesian inference, matrix factorization,
sparse representation, or leading deep learning techniques [6],
[71, [8], [9], [10], these fusion-based methods have become
mainstream. However, the HR auxiliary images, such as the
panchromatic image and multispectral image, need to be
captured at the same scene as LR hyperspectral images,
resulting in the impracticality of fusion-based approaches in
real scenarios. Although the recent work [11] realized the
fusion between HR auxiliary images and LR hyperspectral
images without registration, additional auxiliary information
is still needed.

Compared with fusion-based methods, single-image super-
resolution needs no auxiliary images or other priors, which
is more applicable to real scenarios. Traditional methods
usually resort to some spatial or spectral statistical distribu-
tions (e.g., total variation, sparse regularization, self-similarity,
and low-rank approximation) to reconstruct HR hyperspectral
images [12], [13], [14]. However, these handcrafted priors can-
not fully characterize the intrinsic properties of hyperspectral
images. Consequently, the reconstruction performance is often
unsatisfactory. Recently, due to the success of the convolu-
tional neural network (CNN) in natural image super-resolution,
many CNN-based single hyperspectral image super-resolution
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Fig. 1. Comparison of the frameworks for group-based hyperspectral

image super-resolution. (a) Framework of the advanced group-based method.
(b) Framework of the proposed GELIN, where each image group is
super-resolved individually through the proposed NGIM.

methods have been proposed. For CNN-based hyperspectral
super-resolution, the most intuitive way is to apply proven nat-
ural image super-resolution methods to reconstruct hyperspec-
tral images in a band-by-band manner [15], [16]. However,
such a reconstruction manner ignores the data characteristics
of hyperspectral images, taking no spectral correlations into
consideration. Inevitably, the reconstructed HR hyperspectral
images suffer from severe spectral distortion. In order to
obtain high spectral fidelity, several methods take the entire
LR hyperspectral images as input and impose constraints
on the network, e.g., 3-D convolution [17], [18], spectral
angle loss [19], and spectral difference [20]. Due to the
high spectral dimensionality of hyperspectral images, these
methods need larger models (hundreds to thousands of feature
maps or deeper networks) to super-resolve all spectral bands
simultaneously, but the size of the network is constrained by
the limited amount of data. Consequently, the expressiveness
of CNN is hindered.

To overcome the drawbacks associated with high spectral
dimensionality while exploring spectral correlations, several
group-based methods have been proposed [21], [22], [23].
As shown in Fig. 1(a), the framework of group-based meth-
ods can be summarized as follows. The LR hyperspectral
image is divided into several subgroups for shallow feature
extraction, and the intermediate results of each subgroup
are concatenated together for deep feature extraction and
reconstruction. Although the current advanced group-based
methods can greatly decrease the computational complexity,
it still processes the whole image (the concatenated interme-
diate results) at once, which increases the difficulty of deep
feature extraction and reconstruction. In a word, the advanced
group-based methods are still troubled by the side effects
introduced by the high dimensionality of hyperspectral images,
resulting in unsatisfactory reconstruction performance.

Except for high spectral dimensionality, the high simi-
larity among bands is another outstanding characteristic of
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hyperspectral images. All spectral bands of a hyperspectral
image are taken at the same scene, resulting in large spatial
information redundancy in hyperspectral data. Since different
spectral bands look quite similar, the missing details in the
specific band are likely to be complemented by other bands,
especially adjacent bands. However, the advanced group-based
methods usually simply stack the features of each group
together, failing in effectively exploiting the beneficial infor-
mation contained in neighboring image groups. Consequently,
there is still room for further improvement in reconstruction
performance.

Taking all the above into account, we propose a group-based
embedding learning and integration network (GELIN) for
hyperspectral image super-resolution, as shown in Fig. 1(b),
which effectively explores and exploits the inherent data
characteristic of hyperspectral images. Except for spatial infor-
mation, spectral information is also crucial for hyperspectral
image super-resolution. The high similarity among different
bands introduces much complementary information, which
contains beneficial details that can be further exploited to boost
the super-resolution performance. Moreover, failing to explore
the correlation among spectra will result in severe spectral
distortion, which is highly detrimental to the subsequent
high-level vision tasks, i.e., classification [24], [25] and target
detection [26]. Based on the above observations, we design
the spatial-spectral embedding learning module (SSELM)
to simultaneously explore the spatial and spectral informa-
tion of hyperspectral images. The advanced self-calibrated
convolution (SCConv) [27] is introduced to enable spatial
feature extraction with a large receptive field. Similar to
many previous group-based methods, SSELM adopts the
group-convolution and parameter-sharing strategy to reduce
the computational burden. After acquiring the immediate
results of each group, the advanced group-based methods
usually simply stack them together for further reconstruction,
which makes insufficient utilization of the complementary
information in hyperspectral data. To practically resolve this
problem, we propose a neighboring group integration mod-
ule (NGIM) to reconstruct each hyperspectral image group
individually with the assistance of complementary information
in neighboring image groups. Specifically, NGIM extracts the
missing details from two information sources, i.e., the target
image group and its neighboring image groups. Then, NGIM
enhances the difference between the features of two infor-
mation sources to obtain the discriminative embedding, which
represents the complementary information among neighboring
image groups. Finally, the discriminative embedding is fused
back with the target image group to reconstruct the refined
HR hyperspectral image. In this way, not only can we make
full use of the complementarity but also alleviate the side
effects introduced by the high dimensionality of hyperspectral
data. The qualitative and quantitative experiments on both
nature hyperspectral datasets and remote sensing hyperspectral
datasets demonstrate our superiority over other state-of-the-art
methods both visually and metrically.

In summary, our contributions can be concluded as follows.

1) A novel single hyperspectral image super-resolution

method GELIN is proposed. Both spatial information
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and spectral information are well-considered to boost
the final reconstruction performance.

2) Rather than modeling all spectral bands simultaneously,
we super-resolve the hyperspectral image in a group-
by-group manner, which not only explores the spectral
correlations but also alleviates the difficulty of feature
extraction and reconstruction.

3) Considering the strong correlations among spectra,
we propose an NGIM to exploit the rich complementary
information contained in hyperspectral data, leading to
better spatial fidelity.

The rest of this article is organized as follows. In Section II,
we describe some existing methods related to our work.
Section III gives details about the newly proposed GELIN
method. Then, the network settings and experimental results
involving ablation analysis, qualitative experiments, and quan-
titative experiments are reported in Section IV. Finally,
Section V presents the conclusion.

II. RELATED WORKS
A. Single Natural Image Super-Resolution

In recent years, deep convolutional networks have shown
a remarkable capability of recovering the missing details in
natural images. As the pioneering work of the natural image
super-resolution task, Dong et al. [28] upscaled an input image
by bicubic interpolation and trained a CNN with three layers
(SRCNN) to recover the missing details, which showed better
performance over traditional methods. Later, some methods
adopted the residual learning strategy to stable the training
process and deepen the networks, including VDSR [29],
DRCN [30], EDSR [31], DRRN [32], LapSRN [33], and CRD-
Net [34]. Based on the observation that higher peak signal-to-
noise ratio (PSNR) does not necessarily equate to a better
super-resolution result in perceptual, SRGAN [35] adopted a
generative adversarial network for photorealistic results. More-
over, RDN [36], DBPN [37], and RCAN [38] were proposed
by introducing dense connections, iterative up-down sampling,
and the attention mechanism. To further exploit the potential of
the attention mechanism, SAN [39] proposed a second-order
attention network for more powerful feature expression, and
HAN [40] proposed a holistic attention network to model
the interdependencies among different convolutional layers.
Most recently, Mei et al. [41] combined nonlocal attention and
sparse representation and proposed nonlocal sparse attention
to retain long-range modeling capability. GLEAN [42] used
pretrained generative adversarial networks as a latent bank to
improve the performance of reconstructed images. Although
these methods have proven to be efficient in natural image
super-resolution, they fail to achieve satisfactory results when
applied directly to the hyperspectral image. Reconstructing the
hyperspectral image in a bandwise manner, these single natural
image super-resolution methods take no spectral information
into consideration. As a result, the produced super-resolution
results suffer from severe spectral distortion.

B. Single Hyperspectral Image Super-Resolution

In recent years, the single hyperspectral image super-
resolution has gained more and more attention due to its
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feasibility and efficiency. Akgun et al. [43] first reconstructed
the HR hyperspectral images by modeling the hyperspectral
image acquisition process. Li et al. [44] conducted an analysis
on spectral mixture and sparsity of spatial-spectral group and
then proposed a novel hyperspectral image super-resolution
framework. In [12], the total variation prior was utilized
to guide the reconstruction process of hyperspectral images.
However, these methods usually resort to handcrafted priors,
which are time-consuming and sophisticated to optimize.
Moreover, the handcrafted priors take no external information
into consideration, limiting the reconstruction performance.
Recently, several hyperspectral image super-resolution meth-
ods based on deep learning techniques have been proposed.
Hu et al. [20] designed a spectral difference network to
reduce spectral distortion. Yuan et al. [15] adopted a transfer
learning strategy to learn the mapping between LR and HR
hyperspectral images and applied nonnegative matrix factor-
ization to enforce collaborations between LR and HR images.
Xie et al. [45] blended the feature matrix extracted by
a deep neural network with the nonnegative matrix fac-
torization strategy for super-resolving real-scene hyperspec-
tral images. However, these methods exploit spatial and
spectral features, leading to spatial-spectral inconsistencies.
In recent years, end-to-end methods have become mainstream.
Mei et al. [17] designed a 3-D fully CNN to explore the
correlations among spectra, but the computational cost is very
high. Li et al. [19] developed a grouped deep recursive residual
network (GDRRN) and used spectral angle mapper (SAM)
loss to reduce spectral distortion. Based on the spectral group-
ing strategy, Jiang et al. [21] proposed a spatial-spectral prior
network (SSPSR) with group convolution and progressive
upsampling framework. Li et al. [18] introduced a mixed con-
volutional network (MCNet) to extract the potential features by
2-D/3-D convolution, but processing all bands simultaneously
with 3-D convolution would introduce heavy computational
cost, especially for remote sensing hyperspectral images.
Wang et al. [16] designed a dual-channel network to recon-
struct images in a band-by-band manner and jointly exploited
the information from both single band and adjacent bands.
However, such a band-by-band scheme requires considerable
training time. Most recently, Liu et al. [23] developed a
spectral grouping and attention-driven residual dense network
(SGARDN), which considered the block characteristic of
hyperspectral images. Wang et al. [22] designed a group-based
feedback network with a regularization network to explore
the coherence among bands and preserve the spatial-spectral
structure of the scene. Li et al. [46] proposed the multido-
main feature learning strategy to explore spatial and spectral
knowledge by sharing spatial information.

Generally, deep learning-based methods achieve bet-
ter reconstruction results than traditional methods, and
group-based methods show better performance over nongroup
ones. In most cases, the group-based methods simultaneously
model all spectral bands during deep feature extraction and
reconstruction, which places great demand on the network
size. However, the limited amount of available hyperspectral
data cannot support a large-scale network, which becomes
a troublesome contradiction. Besides, the high similarity
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between different bands is another notable characteristic of the
hyperspectral image, which introduces much spatial redundant
information that has proven to be rewarding for hyperspectral
super-resolution. Nevertheless, the shallow features of each
hyperspectral image group are simply concatenated together
in the advanced group-based methods. There are insufficient
studies on how to effectively exploit spatial redundancy to
extract and recover more missing details.

To this end, we propose a novel hyperspectral image
super-resolution network to reconstruct HR images in a group-
by-group manner. An SSELM is designed to explore the data
characteristic of hyperspectral images, which achieves spatial
and spectral information extraction simultaneously. Moreover,
an NGIM is proposed to reconstruct the target image group
with the assistance of its neighboring groups, which exploits
the complementarity contained in redundant information to
recover more missing details.

III. PROPOSED METHOD

In this section, we will detail the proposed hyperspectral
super-resolution method GELIN. As shown in Fig. 2, GELIN
mainly consists of two parts: SSELM, exploiting the spatial
and spectral information of each hyperspectral image group,
and NGIM, fully utilizing the redundant information con-
tained in neighboring image groups to assist the reconstruc-
tion process of the target group. In the following, we will
introduce the network framework first and then detail SSELM
and NGIM.

A. Overall Framework

Denoting the input LR hyperspectral image as Iir €
R>wxC " its original HR hyperspectral image as Igr €
RA*WxC “and the output super-resolved hyperspectral image
as Isg € R¥>*WXC our goal is to predict super-resolution
results Isg from LR input /; g through the proposed network,
and the output Isg should be consistent with Iyr as much as
possible in both spatial and spectral. The above procedure can
be formulated as

Isg = HgeLin(ILRr) (1)

where Hgprinv denotes the proposed GELIN method.

Neighboring
Groups
Concatenate
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Architecture of the proposed GELIN consisting of the SSELM and the NGIM.

Among advanced methods, group-based methods have
shown superiority over other methods. Following the same
insight, we divide the input LR hyperspectral image into
G groups, hr = [I'g,..., Iz, ..., I%]. Specifically, fol-
lowing the settings in SSPSR [20], each image group has
¢ bands, and the neighboring hyperspectral image groups have
o overlaps. The settings of ¢ and o are discussed in Section IV.
For each group Iy, we apply the proposed SSELM to learning
its spatial-spectral embedding f;%

fi = Hssewm (1) (2)

where Hssgrm denotes the proposed SSELM, which consists
of one convolution layer for shallow feature extraction and
R spatial-spectral embedding learning blocks (SSELBs) for
deep feature extraction. Considering the high similarity among
different bands, we adopt the same SSELM to process different
image groups, which greatly reduces the computational cost.
After acquiring the spatial-spectral embedding of each
hyperspectral image group, we reconstruct the final HR hyper-
spectral image in a group-by-group manner. For fully utilizing
the redundant information to recover more missing details,
when reconstructing the gth group, the NGIM receives both
the embedding of the target group and its neighboring groups
and then generates the super-resolved hyperspectral image of
the gth group with the assistance of its neighboring groups

I§g = Hyom (ffR_l, [ fgl) (3)

where Hyngv denotes the function of the proposed NGIM and
&l fE and f57 are the features of the (g — 1)th, gth, and
(g + Dth image group, respectively.

Finally, the super-resolved hyperspectral images can be
obtained by merging each image group and adding the results
with global residual (we ignore it in Fig. 2), which can be
expressed as

AR T 4)

Isg = [Iggs - I -

where I g 1 is the bicubic upsampling version of the input
LR hyperspectral image.
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B. Spatial-Spectral Embedding Learning Module

In natural image super-resolution, only spatial information
needs to be considered. However, in hyperspectral image
super-resolution, both spatial information and spectral infor-
mation are of great importance. Failing to thoroughly exploit
spatial and spectral features will result in insufficient detail
recovery and undesirable spectral distortion.

For the above reasons, we design an SSELM to extract
spatial and spectral features simultaneously, and the archi-
tecture of SSELM is shown in Fig. 3. Specifically, SSELM
contains one convolutional layer for shallow feature extraction
and R SSELBs, which can be expressed as

f(f = Hsfe(IfR)
fi% = Hssei, (HsseLs,, (-~ Hsses, (f5) 7)) + f5 (5)

where Hgg refers to a convolutional layer with the kernel size
of 3 x 3 for shallow feature extraction and Hssgrg, refers to
the Rth SSELB. Also, we introduce residual learning “+ f(f ”
to stable and accelerate the training process.

As the building block of SSELM, SSELB is designed
to learn spatial-spectral embedding of hyperspectral data.
As shown in Fig. 3, we cascade the SCConv and the residual
channel attention block (RCAB) to form the SSELB. The
RCAB has been used as the building block in hyperspectral
image super-resolution for spectral correlations exploration,
and however, the spatial information learning ability of the
network could be further enhanced since the commonly used
2-D convolutional layer has a relatively limited receptive field.
Inspired by SCNet [27], we introduce the SCConv in our
building block. The SCConv allows feature extraction with
large receptive field, leading to more representative spatial
embedding learning. Specifically, for the input features X €
R>*wxCy “the SCConv first uniformly splits it into two parts
X1, X, € RxwxU/2C; and each part will be processed by
different branches. For the first part X, the average-pooling
operation with ratio r is first conducted to downsample it to
the lower spatial resolution space, and then, one convolutional
layer with the kernel size of 3 x 3 is equipped to extract
its spatial features in small-scale space. Finally, a bilinear

Structure of the proposed SSELM, which consists of a normal convolutional layer and several cascaded SSELBs.

interpolation operator is introduced to map the features back
to the original spatial resolution space. The above workflow
can be formulated as

X} =Up 1, (Hi(Down |, (X1))) ©)

where Down |, refers to the average-pooling operation with
ratio r, H; refers to a convolutional layer with the kernel
size of 3 x 3, and Up 7, refers to the bilinear interpolation
operator with ratio r. After collecting the features in the lower
spatial resolution space, the formula for calibration operation
is defined as

Y] = Hy(X)) -0 (X1 + X)) )

where H, refers to a convolutional layer with the kernel size of
3 x 3 and o is the sigmoid function. Finally, the output of this
branch can be obtained by processing intermediate feature Y|
with another convolutional 3 x 3 layer

Y1 = Hi(Y]). ®)

As for another part X,, we simply use a 3 x 3 convolutional
layer to obtain the output of this branch

Yy = Hy(X3) )

and finally, we concatenate Y| and Y, to obtain the output of
the SCConv.

The above self-calibration operation performs spatial feature
extraction at two different spaces, which enables each pixel
to consider the information both from the original space and
the lower spatial resolution space. As for the super-resolution
task, a larger receptive field enables the network to effectively
search similar image patches for recovering missing details.
Moreover, the features in lower spatial resolution space carry
much low-frequency information, which allows the network to
spend more computational sources on the extraction and recov-
ery of high-frequency details, leading to better reconstruction
performance.

Compared with natural images, the correlation among bands
is a unique characteristic of hyperspectral images. Failing
to mine the spectral information can lead to unsatisfactory

Authorized licensed use limited to: Wuhan University. Downloaded on February 21,2023 at 09:08:03 UTC from IEEE Xplore. Restrictions apply.



5541416

reconstruction results. Taking the spectral pattern into consid-
eration, we choose the widely used RCAB [38] to explore
the correlation among different bands. To be specific, each
RCAB consists of two convolutional layers with a ReLU
layer in the middle, followed by channel attention (CA). The
CA first obtains the aggregated information of input features
by global pooling and then uses one dimensionality-reduction
layer and one dimensionality-increasing layer followed by the
sigmoid gating function to capture the cross-channel correla-
tions. Finally, we obtain the weight vector to adaptively rescale
the importance of each channel.

Through the well-designed SSELM, we can not only extract
spatial information of the hyperspectral image in a large
receptive field but also explore the correlations among different
spectra, both of which are crucial for hyperspectral image
super-resolution.

C. Neighboring Group Integration Module

In order to deal with problems introduced by the high
dimensionality of hyperspectral data, many advanced meth-
ods [21], [22], [23] adopt the group-convolution strategy to
design the network. Compared with nongroup-based methods,
these group-based methods have shown better performance in
reconstruction quality and computational cost. As mentioned
earlier, in advanced group-based methods, the intermediate
results generated by group shallow feature extraction are
usually stacked together. Then, these methods conduct deep
feature extraction and reconstruction on all spectral bands
simultaneously, which requires a large network with even
thousands of feature maps. However, the limited available
data constrain the size of the network, which hinders the
characteristics of hyperspectral data from being well-explored.
In brief, the advanced group-based methods are still troubled
by the high dimensionality of hyperspectral data, which can
be further optimized.

Moreover, the strong correlations among different bands
have been proven in previous work [23], which should not be
ignored in hyperspectral image super-resolution. When recon-
structing the target image group, the complementary informa-
tion among neighboring image groups can contribute to the
missing details recovery. To utilize the valuable complemen-
tary information, an intuitive way is to directly concatenate
the features from two information sources, i.e., neighboring
groups and the target group together. However, this approach
fails to explicitly represent the complementarity between
groups since two information sources are concatenated and
treated as one. Consequently, the strong correlations among
spectra are not well-exploited, limiting the reconstruction
quality of super-resolved hyperspectral images.

To address the above problems, we propose an NGIM to
reconstruct the HR hyperspectral image in a group-by-group
manner. At the same time, NGIM effectively exploits the
complementary information contained in neighboring groups
to recover more high-frequency details. The architecture of
NGIM is shown in Fig. 4.

Let % € R"™®*Cs denote the embedding of the gth group
learned by SSELM. When reconstructing the gth hyperspectral
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Fig. 4. Architecture of the proposed NGIM. The redundant information con-
tained in neighboring hyperspectral image groups is exploited to complement
missing details in the target image group.

image group, the upper branch of NGIM takes both the
embedding of the target group and its neighboring groups as
input. Then, the upper branch uses two convolutional layers
with different numbers of filters to mix these groups. The
above workflow can be formulated as

S =Ho (o ([ A5 R £5])) 0

where f5. refers to the mixed embedding and Hp, refers to the
first convolutional layer that downscales the filter number of
the input to (1/2)Cy. Hy refers to the followed convolutional
layer that upscales the filter number to Cy. Considering the
high dimensionality of the input stacked features, we adopt
two convolutional layers with different numbers to reduce the
parameters.

Then, we upsample f5. and f to obtain their represen-
tation in HR space, which can be expressed as

fie = Ui(f5)
féR = UZ(ngR)

where U; and U, refer to two upsampling functions that are
conducted by the deconvolutional layer.

£z and £ recover missing details from different sources.
The difference between them contains the complementary
information, which facilitates the detail recovery of the target
image group. In order to adaptively retain the complementary
information, we further enhance the difference to obtain the
discriminative embedding f#

(1)
12)

12 = He( i — fi) (13)
where H, refers to the convolutional layer used to enhance the
difference.

Finally, we fuse the discriminative embedding f$ with fijz
to borrow the complementary information from neighboring
groups to the target group and use one convolutional layer He.
to reconstruct the super-resolution results of the gth hyperspec-
tral image group. The procedure can be formulated as

IgR = Hrec(feg + féR) (14)
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TABLE I

QUANTITATIVE PERFORMANCE OF DIFFERENT LOSS FUNCTIONS
EVALUATED OVER FOUR TESTING IMAGES OF CAVE DATASET
WITH RESPECT TO AVERAGE PSNR/SAM/SSIM
AT THE SCALE FACTOR 4

Ly L. L, PSNRT SAM| SSIM{
v 39.9857 3.0145  0.9535
v vV 402292 2.8699  0.9537
Vi Vv 401505 3.0013 0.9534
v VvV 402676 28657 0.9537

D. Loss Function

In advanced super-resolution methods, £, and ¢, losses are
the most commonly used loss functions. Since the ¢, loss tends
to generate oversmooth results, we adopt the ¢ loss to measure
the accuracy of reconstructed HR hyperspectral images. The
{1 loss can be formulated as

| N
£10) = 5 >l = el (15)
n=1
where Iy and Ifjz are the nth reconstructed super-resolved
hyperspectral image and original HR hyperspectral image,
respectively, N is the number of images in one training batch,
and O refers to the parameter set of the proposed network.
Although the above £; loss can retain the spatial informa-
tion well, it takes no spectral consistency into consideration.
In order to preserve spatial and spectral information simulta-
neously, we introduce the SAM loss in [19] to preserve the
spectral profile of super-resolution results. The SAM loss can
be formulated as

N N,
1 1 1
L;(0) = ~ E _Np 12:1 — arccos

n=1

n,i n,i
ISR " THR

. (16)
Isk

I
2 HR

2

where N, is equal to H x W and 1;1’{ refers to the ith spectral
vector of the nth image.

Furthermore, inspired by [22], we introduce a gradient loss
to preserve the sharpness of the reconstructed images in both
spatial and spectral domains

1 al n I
L,(0) = N ZHM(ISR) - M) |, a7
n=1
where M computes the gradient value along horizontal, verti-
cal, and spectral dimensions of image.
In summary, the joint loss for the proposed network can be

formulated as

L:joint((a) = »Cl + /IS»CS + igﬁg (18)

where A, controls the weight of SAM loss and 4, controls the
weight of gradient loss. In our experiment, we set 1, = 0.3 and
Ag = 0.1 empirically.

In Table I, we report the reconstruction results under differ-
ent losses. When adopting spectral loss £; with pixel loss £,
both PSNR and SAM metrics show significant improvement.
The gradient loss £, contributes to the preservation of sharp
parts of the image, resulting in notable improvement in the
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PSNR metric. Finally, we train the network with joint loss to
constrain the network in both spatial and spectral domains.

E. Implementation Details

In the proposed network GELIN, the input hyperspectral
images are divided into G groups with o overlaps between
neighboring groups. Each group has ¢ spectral bands, and
we select the last ¢ bands as the last group. We set the
kernel size of all convolutional layers to 3 x 3 except for
that in CA, where the size is set to 1 x 1. Zero padding is
applied to keep the spatial size of feature maps. When the
scale factor is 4, we use the 8 x 8 deconvolutional layer
with four stridings and two paddings. When the scale factor
is 8, we use the 12 x 12 deconvolutional layer with eight
stridings and two paddings. All the deconvolutional layers
are followed by parametric rectified linear units (PReLUs).
Following the settings in [38], we set the reduction ratio in
CA as 16. Considering that the input LR hyperspectral images
have a small spatial resolution, we set the downsampling rate
in SCConv as 2. In the proposed NGIM, both the 1st and
gth groups have only one neighboring image group, so we
use the gth and 1st groups to pad their absented neighboring
image group, respectively. For the training phase, we set the
mini-batch size of 8 and use the Adam optimizer with an
initial learning rate of le™*, which decays by ten times after
8.36k iterations, while the total iteration is 8.8k. Our model
is implemented by Pytorch on NVIDIA TITAN V.

1V. EXPERIMENTS AND RESULTS
A. Datasets and Experimental Setup

In this section, we evaluate our method on both nature
hyperspectral image datasets, i.e., CAVE dataset [47] and
ICVL dataset [48], and remote hyperspectral image datasets,
i.e., Chikusei dataset [49] and Reflective Optic System Imag-
ing Spectrometer (ROSIS) dataset. We compare our method
with eight state-of-the-art methods, including one single
natural image super-resolution method EDSR [31] and six
learning-based single hyperspectral image super-resolution
methods, ie., GDRRN [19], SFCSR [16], SSPSR [21],
MCNet [18], RFSR [22], and MDFL [46]. Also, we choose the
Bicubic interpolation method as the baseline. For EDSR [31],
we treat the whole hyperspectral image as input and adjust the
channels of the first and last convolutional layers accordingly.
For the above methods, we try our best to achieve their best
performance.

Six widely used evaluation indices are employed in exper-
iments, including PSNR, SAM, structure similarity (SSIM),
cross correlation (CC), erreur relative globale adimensionnelle
de synthese (ERGAS), and root-mean-squared error (RMSE).
For PSNR and SSIM, we report their mean value over all
spectral bands. The best values for these indices are 400, 0,
1, 1, 0 and 0, respectively.

B. Experimental Results on CAVE Dataset

Captured by the cooled CCD camera with wavelengths
ranging from 400 nm to 700 nm, the CAVE dataset con-
tains 32 HR hyperspectral scenes, all of which are of
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TABLE II

QUANTITATIVE PERFORMANCE OVER TEN TEST IMAGES ON THE
CAVE DATASET. BOLD REPRESENTS THE BEST RESULT AND
UNDERLINE REPRESENTS THE SECOND BEST

Method d PSNRT SAM| CCt RMSE| SSIM? ERGAS]

Bicubic 4 35.1478 3.8769 0.9800 0.0204 0.9185 5.5747
EDSR [31] 4 389195 3.5364 0.9874 0.0144 09477 3.7676
GDRRN [19] 4 37.5605 3.5439 0.9853 0.0162 0.9396 4.3240
SFCSR [16] 4 39.1516 3.1026 0.9872 0.0142 0.9486 3.7333
SSPSR [21] 4 39.0520 3.1893 0.9877 0.0145 0.9493 3.6934
MCNet [18] 4 39.2585 3.0237 0.9878 0.0139 0.9505 3.6804
RESR [22] 4 38.6029 3.0798 0.9870 0.0146 0.9477 3.9050
MDFL [46] 4 39.0883 3.0668 0.9874 0.0142 0.9493 3.7556

Ours 4 40.2676 2.8657 0.9888 0.0130 0.9537 3.3599

Bicubic 8 30.9401 5.2591 0.9594 0.0316 0.8455 8.6986
EDSR [31] 8 33.8730 4.9678 0.9692 0.0246 0.8829 6.4536
GDRRN [19] 8 32.9514 4.9250 0.9660 0.0265 0.8711 7.0478
SECSR [16] 8 34.3690 43633 0.9709 0.0234 0.8907 6.1633
SSPSR [21] 8 34.2500 4.3306 0.9697 0.0240 0.8865 6.2384
MCNet [18] 8 34.5124 4.3407 0.9709 0.0233 0.8936 6.1249
RFSR [22] 8 34.5331 4.0530 0.9706 0.0231 0.8934 6.0608
MDFL [46] 8 34.4875 4.2917 0.9703 0.0235 0.8924 6.1441

Ours 8 34.9338 3.9810 0.9711 0.0230 0.8953 5.9430

size 512 x 512 x 31. We randomly select 22 scenes from the
dataset for training, and the remaining 10 scenes are for test-
ing. When the scale factor is 4, we randomly extract patches
with 128 x 128 x 31 pixels as the HR hyperspectral image;
when the scale factor is 8, we randomly extract patches with
256 x 256 x 31 pixels. The corresponding LR hyperspectral
images are generated by Bicubic interpolation. To investigate
the influence of spectral band numbers of each group ¢ and
overlaps o, SSPSR [21] has conducted some experiments,
which demonstrate that either setting ¢ too large or too
small can deteriorate the reconstruction performance, while a
moderate ¢ could boost the performance. The results also show
that cropping spectrum bands in an overlapping way could
benefit the reconstruction quality, but a large o would result in
a heavy computational burden. In our experiments, the values
of ¢ and o are determined according to the band numbers of
the hyperspectral image in each dataset, with the balance
of computational cost and reconstruction performance taken
into consideration. For the CAVE dataset, each hyperspectral
image group has eight spectral bands with two overlaps, i.e.,
¢ = 8 and 0 = 2. In the SSELM, we set the number of the
SSELB as R = 8.

In Table II, we compare the proposed method with some
state-of-the-art methods. The average values of six evaluation
indices for different scale factors are reported. Although
EDSR [31] achieves relatively promising results in spatial
information recovery, it neglects the spectral information,
leading to severe spectral distortion. Considering the high
dimensionality of hyperspectral data, GDRRN [19] designed a
group-based recursive network with SAM loss to reduce spec-
tral distortion. Following the same insight, SSPSR [21] and
RFSR [22] both adopted group strategy and achieved signifi-
cant improvement. SFCSR [16], MCNet [18], and MDFL [46]
combined 2-D and 3-D convolutional layers to explore the
correlation among spectral bands. However, 3-D convolution
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significantly increases the computational burden, especially
when super-resolving remote sensing hyperspectral images at
the large scale factor. It can be noticed from Table II that
our method significantly outperforms other algorithms in all
evaluation indices. The PSNR value of our method is about
1 dB higher for scale factor 4x and 0.4 dB higher for scale
factor 8x than that of the second-best method. Due to the
proposed SSELM, our method can better extract the spatial
and spectral information of hyperspectral data. Moreover,
attributed to the proposed NGIM, the target image group can
fully exploit the rich spatial redundant information contained
in neighboring groups to recover more missing details.

Furthermore, we display the mean absolute differences
between reconstructed super-resolved images and original HR
images in both spatial and spectral. The mean error maps of
four test scenes from the CAVE dataset at scale factors 4 and 8
are shown in Figs. 5 and 6, respectively. The PSNR and SAM
values of different competing methods are reported at the
bottom of these maps as supplementary materials. From the
reconstruction results, we can find that the proposed GELIN
method shows superiority over other methods in recovering
the missing spatial information of HR hyperspectral images.
Compared with the state-of-the-art methods, i.e., MCNet and
RFSR, our method provides better recovery of details such
as text, edge of feathers, and fruits, which is mainly because
the NGIM brings much redundant information in neighbor-
ing groups to the target group to assist the reconstruction
process. For the spectral fidelity, we demonstrate the mean
spectral difference curve of three test scenes from the CAVE
dataset in Fig. 7. In order to obtain more reliable conclusions,
instead of randomly selecting a few points, we evaluate the
spectral reconstruction quality from the perspective of the
whole image. As can be seen from Fig. 7, the hyperspectral
images reconstructed by our proposed method achieve the best
spectral fidelity, while other competing methods suffer from
more severe spectral distortion.

C. Experimental Results on Chikusei Dataset

The remote hyperspectral image dataset Chikusei, taken by
the Headwall Hyperspec-VNIR-C imaging sensor over agri-
cultural and urban areas in Chikusei, Ibaraki, Japan, contains
128 spectral bands with a spectral range from 363 to 1018 nm
and a spatial size of 2517 x 2335. Since some edge part of the
image contains no information, we extract the central part of
the original image with 2048 x 2048 pixels and then divide
it into training, validation, and testing data. To be specific,
we crop the bottom region of the image into four nonoverlap
hyperspectral images with the size of 512 x 512 x 128 and
randomly select three subimages for testing and one for
validation. The rest region of the image is cropped to form the
training data, which contains 12 nonoverlapping hyperspectral
images with 512 x 512 x 128 pixels. When the scale factor
is 4, we randomly extract patches with 128 x 128 x 128 pixels
as the HR image; when the scale factor is 8, we randomly
extract patches with 256 x 256 x 128 pixels. The corre-
sponding LR hyperspectral images are generated by Bicubic
interpolation. For the Chikusei dataset, we set the spectral
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Fig. 5. Mean error maps of two test hyperspectral images in the CAVE dataset at the scale factor 4: hairs and feathers. The corresponding PSNR and SAM
values of each comparison method are reported below each map.
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Fig. 6. Mean error maps of two test hyperspectral images in the CAVE dataset at the scale factor 8: real_and_fake_peppers and face. The corresponding
PSNR and SAM values of each comparison method are reported below each map.
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Fig. 7. Mean spectral difference curve of three test hyperspectral images in the CAVE dataset at the scale factor 4: hairs, fake_and_real_food, and
chart_and_stuffed_toy.
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SSPSR RFSR Ours

42.4364(0.9711 42.0155/0.9678 42.7858(0.9731 PSNR|SSIM

37.8819|0.9234 36.9307|0.9038 38.0532/0.9257 PSNR|SSIM

Reconstructed images of one test hyperspectral image in the Chikusei dataset with spectral bands 70-100-36 as R-G-B at the scale factors 4 and 8.

The corresponding PSNR and SSIM values of the comparison method are reported below each image.

TABLE III

QUANTITATIVE PERFORMANCE OVER THREE TEST IMAGES ON THE
CHIKUSEI DATASET. BOLD REPRESENTS THE BEST RESULT
AND UNDERLINE REPRESENTS THE SECOND BEST

Method  d PSNRT SAM| CCt RMSE| SSIM? ERGAS]
Bicubic 4 40.0063 2.5679 0.9317 0.0127 0.9262 5.5924
EDSR [31] 4 42.7949 1.8298 0.9615 0.0091 0.9617 4.1877
GDRRN [19] 4 41.8253 2.0015 0.9534 0.0103 0.9513 4.5967
SFCSR [16] 4 423938 1.9326 0.9589 0.0098 0.9558 4.2473
SSPSR [21] 4 43.1525 1.7398 0.9649 0.0089 0.9632 3.9385
RFSR [22] 4 427217 1.8184 09611 0.0094 0.9597 4.1342
Ours 4 43.4615 1.6390 0.9668 0.0087 0.9652 3.7758
Bicubic 8 36.6731 3.8477 0.8491 0.0186 0.8596 8.1526
EDSR [31] 8 37.4693 3.6168 0.8732 0.0167 0.8824 7.5653
GDRRN [19] 8 37.7942 3.0708 0.8834 0.0164 0.8906 7.1589
SFCSR [16] 8 37.8655 3.4363 0.8853 0.0167 0.8869 6.9665
SSPSR [21] 8 38.5092 2.8323 0.9011 0.0151 0.9037 6.5897
RESR [22] 8 37.7712 3.3189 0.8815 0.0166 0.8841 7.0724
Ours 8 38.6396 2.7585 0.9033 0.0151 0.9050 6.4101

band number of each group to 32 and overlap to 8 to reduce
the computational cost, i.e., ¢ = 32 and o = 8. In the SSELM,
we set the number of the SSELB as R = 6 because of fewer
training samples.

Table III shows the average quantitative performance in
terms of six evaluation indices on three testing images of six
comparing methods. We can notice that our method performs
better than other state-of-the-art methods at both two scale
factors on the remote sensing hyperspectral dataset. It is worth
pointing out that the performance gain on the Chikusei dataset
is smaller than that on the CAVE dataset, which is attributed to
the following factors. First, the Chikusei dataset is noisier and
contains more bands, both of which increase the reconstruction
difficulty. Moreover, the available amount of training data of
the Chikusei dataset is also fewer. The above factors lead to
a comparatively small performance gain. Since less training
data are provided, the evaluation results show that our method
can better utilize the characteristics of limited hyperspectral
data.

Qualitative experiments are also conducted to demonstrate
our superiority. In Fig. 8, we visualize the reconstruction

results of one testing image from the Chikusei dataset of
different competitive methods at scale factors 4 and 8. To be
specific, we select the 70th, 100th, and 36th bands of the
hyperspectral image in the testing dataset and treat them as
the R—-G-B channels of composite image for better visual-
ization. From the composite images, we can easily observe
that the proposed method can better recover both low- and
high-frequency details than other algorithms (please refer to
the area marked with red boxes). At the bottom of the visu-
alization result, we also report the PSNR and SSIM values of
the composite images. Moreover, we display the mean spectral
difference curve of two test scenes at different scale factors
from the Chikusei testing dataset in Fig. 9. Among the curve
of different super-resolution methods, one of our methods is
the lowest, which indicates that our method still achieves
the best performance in reducing spectral distortion even
when super-resolving remote sensing hyperspectral images
with numerous bands.

D. Experimental Results on ICVL Dataset

Captured by the Specim PS Kappa DX4 hyperspectral
camera, the ICVL dataset contains 201 images with a size
of 1392 x 1300 x 31. We randomly select 60 scenes for
training and 15 scenes for testing. For training, we randomly
extract patches with 64 x 64 x 31 as the HR image for the
scale factor 4, while the patch size is 128 x 128 x 31 when the
scale factor is 8. The corresponding LR patches are generated
by Bicubic interpolation. Considering the testing efficiency,
we crop the central region of each image with a spatial size
of 512 x 512 to form the test dataset. As for hyperparameters
of the network, the values of ¢,0, and R are the same as
settings of the CAVE dataset.

Table IV shows the super-resolution performance of all
comparing methods. We can observe that our method remains
a significant advantage in the reconstruction on a larger
dataset. Also, we have conducted qualitative experiments on
the ICVL dataset. In Fig. 10, we visualize the composite
images of scenes “eve_0331-1602” and “bguCAMP_0514-
1718 at the scale factor 8. To be specific, the 6th, 10th, and
18th bands are treated as R—-G-B channels of the composite
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TABLE IV

QUANTITATIVE PERFORMANCE OVER 15 TEST IMAGES ON THE
ICVL DATASET. THE BOLD REPRESENTS THE BEST RESULT
AND UNDERLINE REPRESENTS THE SECOND BEST

5541416

0.018f
0.016 |

0.014 -

Mean difference
o o o
o o 9
153 = )

—A—Bicubic
——GDRRN |
EDSR

——SFCSR

—4$—SSPSR
RFSR

—o—Ours

0.006 -

0.004 -

K

0.002 iz

1 13 25 37 49 61 73 85 97 109 121
Band number

Mean spectral difference curve of two test hyperspectral images in the Chikusei dataset at the scale factor (Left) 4 and (Right) 8, respectively.

TABLE V

QUANTITATIVE PERFORMANCE OVER S1X TEST IMAGES ON THE
PU DATASET. BOLD REPRESENTS THE BEST RESULT AND
UNDERLINE REPRESENTS THE SECOND BEST

Method d PSNRT SAM| CCt RMSE] SSIMT ERGAS/

Bicubic 4 43.7590 1.3269 0.9915 0.0090 0.9710 2.1311
EDSR [31] 4 46.2001 1.5090 0.9948 0.0064 0.9825 1.6368
GDRRN [19] 4 46.7422 12493 0.9954 0.0063 0.9829 1.5290
SFCSR [16] 4 47.2475 1.2021 0.9959 0.0058 0.9846 1.4661
SSPSR [21] 4 473203 1.2490 0.9960 0.0057 0.9853 1.4387
MCNet [18] 4 47.4723 1.1820 0.9960 0.0058 0.9850 1.4193
RFSR [22] 4 47.3863 1.2188 0.9959 0.0058 0.9850 1.4354
MDFL [46] 4 47.3071 1.1818 0.9959 0.0059 0.9848 1.4463

Ours 4 47.8884 1.1445 0.9963 0.0055 0.9861 1.3556

Bicubic 8 37.3165 1.9838 0.9636 0.0192 0.9033 4.3439
EDSR [31] 8 38.7711 24062 0.9740 0.0157 09216 3.6605
GDRRN [19] 8 38.8679 1.9681 0.9743 0.0159 0.9212 3.6255
SFCSR [16] 8 39.1738 1.9329 0.9765 0.0153 0.9252 3.5272
SSPSR [21] 8 39.5603 1.9499 0.9779 0.0144 0.9298 3.3767
MCNet [18] 8 39.4438 1.9070 0.9773 0.0149 0.9276 3.4327
RFSR [22] 8 39.5394 2.0230 0.9777 0.0146 0.9293 3.4011
MDFL [46] 8 39.3090 1.8893 0.9766 0.0152 0.9258 3.4902

Ours 8 39.9347 1.7906 0.9794 0.0141 0.9331 3.2590

image. It can be observed from the composite images that
our method produces sharper details and less blur. The PSNR
and SSIM values also demonstrate our superiority. Moreover,
we display the mean difference curves of the two scenes at
the scale factor 8 in Fig. 10. The proposed method GELIN
still achieves the best spectral fidelity.

E. Experimental Results on ROSIS Dataset

The Pavia Center (PC) dataset and Pavia University (PU)
dataset were both acquired by the ROSIS sensor. After remov-
ing noisy bands, the PU dataset has 103 bands, while the PC
dataset has 102 bands. To align the spectral bands, we remove
the last band of the PU dataset. For training, the PC dataset is
divided into nine images with the size of 360 x 224 x 102.
We randomly extract patches with 96 x 96 x 102 pixels as
the HR image for the scale factor 4, while the patch size for
the scale factor 8 is 192 x 192 x 102. The PU dataset is
divided into six images with the size of 200 x 160 x 102 for

Method d PSNRT SAM| CCt RMSE] SSIMT ERGAS/
Bicubic 4 285691 5.2791 0.8980 0.0395 0.7597 6.0836
EDSR [31] 4 29.4816 4.9781 0.9169 0.0355 0.8099 5.5198
GDRRN [19] 4 29.7882 4.5563 0.9206 0.0345 0.8202 5.3315
SFCSR [16] 4 29.4515 5.2192 0.9149 0.0359 0.8057 5.5062
SSPSR [21] 4 30.1548 4.5135 0.9273 0.0331 0.8311 5.1032
RFSR [22] 4 29.9788 4.6626 0.9240 0.0338 0.8233 5.2141
Ours 4 30.5362 4.3119 0.9339 0.0315 0.8468 4.9056
Bicubic 8 25.5357 7.4831 0.7884 0.0558 0.5688 8.6066
EDSR [31] 8 26.1892 7.0085 0.8170 0.0520 0.6161 7.9404
GDRRN [19] 8 259817 6.6111 0.8077 0.0532 0.6224 8.1473
SFCSR [16] 8 26.1713 7.2966 0.8153 0.0522 0.6147 7.9462
SSPSR [21] 8 263244 6.5879 0.8229 0.0512 0.6334 7.8384
RFSR [22] 8 26.4084 7.0082 0.8250 0.0508 0.6281 7.7470
Ours 8 26.4852 6.4670 0.8291 0.0502 0.6384 7.7026

testing. For the ROSIS dataset, the values of ¢, 0, and R are
the same as the Chikusei dataset settings.

Table V shows the super-resolution performance of six
comparing methods. The proposed GELIN method can obtain
the best spatial and spectral fidelity at two scales. Meanwhile,
two mean difference maps from the PU dataset are shown
in Fig. 11. The corresponding PSNR and SAM values are
also demonstrated. As can be seen from the error maps, some
edge contours do not appear in our results, which shows
our methods can better recover the high-frequency details.
Moreover, the mean spectral difference curve of two test
images is shown in Fig. 12, which demonstrates our advantage
in alleviating the spectral distortion of reconstructed images.

F. Ablation Study

1) Effectiveness of SCConv: Different from natural image
super-resolution where only spatial information needs to be
considered, in hyperspectral image super-resolution, both spa-
tial fidelity and spectral consistency should be well preserved.
In our method, an SSELM is designed to exploit both spatial
and spectral embedding. The building block of SSELM, the
SSELB, consists of an SCConv for spatial feature extraction
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and an RCAB for spectral information exploration. Since
RCAB has proven to be useful for both natural image super-
resolution [38] and hyperspectral image super-resolution [22],
we do not investigate it here and just verify the effectiveness
of the SCConv. In the ablation study, we simply remove
the SCConv and local residual learning shortcut in SSELM.

SFCSR

28.8886|5.4739

SSPSR RFSR Ours

29.1272(4.6612 29.1299|5.1232

29.2993|4.5670

Mean difference maps of two test hyperspectral images in the PU dataset at the scale factor 4 and 8. The PSNR and SAM values are reported.

As shown in Table VI, compared with “Ours w/o SC” where
SCConv is removed and SSELB only contains RCAB, our
model achieves considerable gains on PSNR and SSIM eval-
vation indices, which indicates that spatial information explo-
ration is crucial for hyperspectral image super-resolution, and
SCConv is capable of learning effective spatial representations.
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Fig. 12.  Mean spectral difference curve of two test hyperspectral images in the PU dataset at the scale factor 4.

TABLE VI

ABLATION STUDY. QUANTITATIVE COMPARISONS AMONG SOME VARIANTS OF THE PROPOSED
METHOD OVER THE TESTING SET OF CAVE DATASET AT THE SCALE FACTOR 4

Variant Model Size(x10°) Params(x10%®) FLOPs(x10'?) PSNRtT SAM| CCt RMSE| SSIMt ERGAS]

Ours 95.506 24.4280 12.9796 40.2676 2.8657 0.9888 0.0130 0.9537 3.3599

Ours w/o SC 77.022 19.7054 12.6652 40.0407 2.8871 0.9885 0.0133 0.9529  3.4373

Ours with 2D 95.407 24.4260 13.0519 40.2174 2.8785 0.9886 0.0131 0.9533  3.3813

Ours w/o NGIM 74.225 18.8984 2.0805 39.8447 29814 09878 0.0136 0.9511 3.5222
TABLE VII

STUDIES ON THE PROPOSED NGIM. THE SKETCHES OF THE PROPOSED GELIN AND TWO VARIANTS ARE SHOWN IN THE TABLE.
THE CORRESPONDING PSNR | SAM | SSIM VALUES ARE REPORTED AT THE BOTTOM OF THE TABLE

Ours

Ours with TRUNK

Ours with PAD

40.2676|2.8657|0.9537

39.7417|3.0612|0.9518

-1 1
Uik fi f% [Zero, f%, Zero]

g
Isp

o

3

40.0084/2.9314/0.9518

To further demonstrate the advantages of SCConv,
we replace it with a normal 2-D convolutional layer with
the kernel size of 3 x 3 that is commonly adopted for
spatial feature extraction. The variant of the above method
is represented as “Ours with 2D” in Table VI. It can be
observed from the results that our model equipped with
SCConv gets a slight improvement in all evaluation indices
with an ignorable increase in the number of parameters and
even less computational cost, which shows the efficiency of
the proposed method.

2) Effectiveness of NGIM: Captured at the same scene, the
different bands of a hyperspectral image look quite similar and
contain much spatial redundant information that can be used
to recover the missing details. However, existing methods do
not make full use of this unique property of hyperspectral
images. In this article, we propose an NGIM to exploit the
redundant information contained in neighboring image groups
to assist in the reconstruction of the target hyperspectral image

group. In order to demonstrate the effect, we remove the
NGIM and add one deconvolutional layer at the end of the
SSELM to reconstruct HR hyperspectral images group-by-
group. As shown in Table VI, “Ours w/o NGIM,” where NGIM
is removed, shows a significant decrease in all evaluation
indices compared to the original model “Ours.” This is mainly
because simply removing NGIM and super-resolving images
in a group-by-group manner not only ignores the correlations
among bands but also neglects the rich information redundancy
in hyperspectral data.

G. Study on the Variant of NGIM

1) NGIM Versus Concatenate Intermediate Results: As
shown in the middle of Table VII, in advanced group-based
hyperspectral super-resolution methods [21], [22], [23], the
intermediate features or images of each group are usually
concatenated together, and then, a trunk network is adopted
to conduct deep feature extraction and reconstruction on all
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Fig. 13. Feature maps of four scenes from the CAVE dataset in the proposed
NGIM. Each image pair consists of (Left) feature map of the target group and
(Right) feature map obtained by integrating neighboring image groups.

bands simultaneously. Although the trunk network can explore
the correlations among bands to some extent, it places great
demand on the network size. However, the limited amount of
hyperspectral data constrains the size of the trunk network,
resulting in insufficient LR-HR mapping learning. Moreover,
simply concatenating intermediate results fails to utilize the
rich redundant information in different bands, failing in recov-
ering adequate details. To verify the superiority of the pro-
posed NGIM, we recover the channels of the intermediate
results to that of the input image groups and then concatenate
these results together. As same as the network sketch of
“Ours with TRUNK” in Table VII, we replace the NGIM
with a trunk network composed of three cascaded SSELBs
and one deconvolutional layer to reconstruct the whole image
simultaneously. For the sake of fairness, the newly constructed
network has a similar number of parameters to the proposed
GELIN. As shown at the bottom of Table VII, the variant
“Ours with TRUNK” lags behind in all evaluation indices,
especially for spatial reconstruction confidence (i.e., PSNR
and SSIM), which shows that our method would recover more
missing details and obtain higher spatial fidelity.

2) Redundant Information Matters: In the proposed NGIM,
we utilize the spatial redundancy contained in neighboring
image groups to complement the missing details in the target
image group. In order to verify that redundant information
indeed contributes to the improvement of reconstruction per-
formance, as shown in the “Our with PAD” of Table VII,
we replace the deeP embedding of neighboring image groups
in NGIM, i.e., f% and £ ', with zero padding of the same
size. After replacement, the variant “Ours with PAD” suffers
a notable performance drop (0.25 dB for PSNR). Lacking
complementary information, the network is not able to fully
utilize the high-similarity characteristic of hyperspectral data
to assist the reconstruction process. Furthermore, we visualize
the feature maps in NGIM to investigate whether neighboring
image groups bring some complementary information to the
network. The feature maps are the summation of the output in
the channel dimension. As shown in Fig. 13, we demonstrate
four different pairs of images in the CAVE dataset. In each
image pair, the left one represents the feature map of the target
group, while the right one represents the feature map obtained
by integrating neighboring image groups. It can be observed
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Fig. 14. Parameters and FLOP studies on the CAVE dataset.

from the visualization results that the right image is more
prominent than the left one in some areas, such as the head
of the bird toy in the first pair of images. This investigation
demonstrates that we can obtain sharper representations and
finer grain of some areas by integrating the information of
neighboring image groups. Through the proposed NGIM, the
rewarding information is further exploited to complement the
missing details of the target image group, leading to effective
high-frequency detail recovery.

H. Model Parameters and FLOPs

In Fig. 14, we demonstrate the reconstruction perfor-
mance versus model parameters and floating-point operations
(FLOPs) on the CAVE dataset for scale factor 4. It can be
noticed that the proposed GELIN obtains the best perfor-
mance with fewer parameters than the state-of-the-art method
SSPSR [21]. The FLOPs of all methods are calculated on the
input with the size of 128 x 128 x 31. It is worth mentioning
that although the model size of GDRRN [19] is quite small,
its FLOPs are not. This is mainly because GDRRN [19]
conducts super-resolution in HR space, which greatly increases
the computational cost. As can be noticed from the results,
the FLOPs of our methods are quite large. This is mainly
because the inference process of each image group is running
in parallel, which would increase the computational com-
plexity. However, the group-by-group reconstruction manner
also contributes to the reconstruction performance, leading to
significant improvement on evaluation metrics.

V. DISCUSSION

The superior performance demonstrates that the proposed
GELIN could effectively utilize the high-similarity character-
istic of hyperspectral data. When super-resolving the target
image group, the specifically designed NGIM helps explicitly
represent and exploit the complementary information con-
tained in neighboring groups to recover more high-frequency
details. We would like to point out that although the group
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strategy has been widely adopted in hyperspectral image super-
resolution, these methods still reconstruct the whole image at
once. On the contrary, the proposed GELIN adopts a group-by-
group super-resolution manner, preventing the network from
modeling all spectral bands simultaneously. In this way, the
difficulty of deep feature extraction and final reconstruction is
alleviated.

Similar to many previous works [18], [19], [21], [22],
[23], [46], in our experiments, the LR image inputs are
generated through conducting bicubic interpolation on orig-
inal HR images. However, it has been pointed by previous
work [50] that an HR image can degrade to many LR images,
while the bicubic degradation model only corresponds to one
specific situation. The mismatch of the degradation model will
deteriorate the final super-resolution results to some extent.
It is the limitation of the current single hyperspectral image
super-resolution methods that only the bicubic degradation
model is considered.

For hyperspectral image super-resolution, a fundamental
limitation is that a model trained on one hyperspectral dataset
cannot be applied to another dataset. Different hyperspectral
datasets are collected by different cameras, which capture
images with different spectral response functions and band
numbers. As a result, when super-resolving images different
hyperspectral datasets, we need to adjust the input-output
settings accordingly and retrain the network.

VI. CONCLUSION

In this article, we present a novel hyperspectral image
super-resolution network to reconstruct HR images in a group-
by-group manner, which mitigates the side effects introduced
by the high dimensionality of hyperspectral data and alleviates
the difficulty of feature extraction and reconstruction. In the
proposed method, we design a spatial-spectral embedding
learning network to exploit spatial and spectral information
simultaneously, which not only obtains high spatial fidelity
but also alleviates spectral distortion. Moreover, an NGIM
is proposed to utilize the redundant information contained in
neighboring image groups to complement the missing details
in the target image group. We have conducted sufficient abla-
tion studies to demonstrate the effectiveness of each proposed
module. Extensive experiments on both natural and remote
sensing hyperspectral datasets demonstrate the superiority of
the proposed method. GELIN not only achieves the best per-
formance in various commonly used image evaluation indices
but also generates perceptually satisfactory HR hyperspectral
images with more high-frequency details when compared with
state-of-the-art algorithms.

REFERENCES

[1] R. O. Green et al.,, “Imaging spectroscopy and the airborne visi-
ble/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ.,
vol. 65, no. 3, pp. 227-248, 1998.

[2] F. F. Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev.,
vol. 14, nos. 3-4, pp. 157-183, Sep. 1999.

[3] G.Lu and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed.
Opt., vol. 19, no. 1, 2014, Art. no. 010901.

[4] A. Lowe, N. Harrison, and A. P. French, “Hyperspectral image analysis
techniques for the detection and classification of the early onset of plant
disease and stress,” Plant Methods, vol. 13, no. 1, p. 80, Dec. 2017.

5541416

[5] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: A technical overview,” [EEE Signal Process. Mag.,
vol. 20, no. 3, pp. 21-36, May 2003.

[6] N. Akhtar, F. Shafait, and A. Mian, “Bayesian sparse representation for
hyperspectral image super resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 3631-3640.

[71 Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Y. Tourneret, “Hyperspec-
tral and multispectral image fusion based on a sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658-3668,
Jul. 2015.

[8] S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing hyperspectral
and multispectral images via coupled sparse tensor factorization,” /[EEE
Trans. Image Process., vol. 27, no. 8, pp. 4118-4130, Aug. 2018.

[9]1 Q. Xie, M. Zhou, Q. Zhao, D. Meng, W. Zuo, and Z. Xu, “Multispec-
tral and hyperspectral image fusion by MS/HS fusion net,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1585-1594.

[10] J. Ma, L. Tang, F. Fan, J. Huang, X. Mei, and Y. Ma, “SwinFusion:
Cross-domain long-range learning for general image fusion via Swin
transformer,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1200-1217,
Jul. 2022.

[11] Y. Qu, H. Qi, C. Kwan, N. Yokoya, and J. Chanussot, “Unsupervised and
unregistered hyperspectral image super-resolution with mutual Dirichlet-
net,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-18, 2021.

[12] Y. Wang, X. Chen, Z. Han, and S. He, “Hyperspectral image super-
resolution via nonlocal low-rank tensor approximation and total variation
regularization,” Remote Sens., vol. 9, no. 12, p. 1286, 2017.

[13] H. Irmak, G. B. Akar, and S. E. Yuksel, “A MAP-based approach for
hyperspectral imagery super-resolution,” IEEE Trans. Image Process.,
vol. 27, no. 6, pp. 2942-2951, Jun. 2018.

[14] H. Huang, J. Yu, and W. Sun, “Super-resolution mapping via multi-
dictionary based sparse representation,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2014, pp. 3523-3527.

[15] Y. Yuan, X. Zheng, and X. Lu, “Hyperspectral image superresolution
by transfer learning,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 10, no. 5, pp. 1963-1974, May 2017.

[16] Q. Wang, Q. Li, and X. Li, “Hyperspectral image superresolution using
spectrum and feature context,” /EEE Trans. Ind. Electron., vol. 68,
no. 11, pp. 11276-11285, Nov. 2020.

[17] S. Mei, X. Yuan, J. Ji, Y. Zhang, S. Wan, and Q. Du, “Hyperspectral
image spatial super-resolution via 3D full convolutional neural network,”
Remote Sens., vol. 9, no. 11, p. 1139, 2017.

[18] Q. Li, Q. Wang, and X. Li, “Mixed 2D/3D convolutional network for
hyperspectral image super-resolution,” Remote Sens., vol. 12, no. 10,
p. 1660, May 2020.

[19] Y. Li, L. Zhang, C. Dingl, W. Wei, and Y. Zhang, “Single hyperspectral
image super-resolution with grouped deep recursive residual network,”
in Proc. IEEE 4th Int. Conf. Multimedia Big Data (BigMM), Sep. 2018,
pp. 1-4.

[20] J. Hu, Y. Li, and W. Xie, “Hyperspectral image super-resolution by
spectral difference learning and spatial error correction,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 10, pp. 1825-1829, Oct. 2017.

[21] J. Jiang, H. Sun, X. Liu, and J. Ma, “Learning spatial-spectral prior for
super-resolution of hyperspectral imagery,” IEEE Trans. Comput. Imag.,
vol. 6, pp. 1082-1096, 2020.

[22] X. Wang, J. Ma, and J. Jiang, “Hyperspectral image super-resolution
via recurrent feedback embedding and spatial-spectral consistency
regularization,” [EEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5503113.

[23] D. Liu, J. Li, and Q. Yuan, “A spectral grouping and attention-driven
residual dense network for hyperspectral image super-resolution,” /[EEE
Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7711-7725, Sep. 2021.

[24] Y. Zhang, K. Liu, Y. Dong, K. Wu, and X. Hu, “Semisupervised clas-
sification based on SLIC segmentation for hyperspectral image,” IEEE
Geosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1440-1444, Aug. 2019.

[25] F. Luo, Z. Zou, J. Liu, and Z. Lin, “Dimensionality reduction and classi-
fication of hyperspectral image via multistructure unified discriminative
embedding,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-16, 2021.

[26] Y. Zhang, Y. Dong, K. Wu, and T. Chen, “Hyperspectral anomaly
detection with Otsu-based isolation forest,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 14, pp. 9079-9088, 2021.

[27] J.-J. Liu, Q. Hou, M.-M. Cheng, C. Wang, and J. Feng, “Improv-
ing convolutional networks with self-calibrated convolutions,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10096-10105.

Authorized licensed use limited to: Wuhan University. Downloaded on February 21,2023 at 09:08:03 UTC from IEEE Xplore. Restrictions apply.



5541416

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[471

(48]

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295-307, Feb. 2015.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1646-1654.

J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1637-1645.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 136-144.

Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 3147-3155.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 624-632.
X. Wang, J. Ma, and J. Jiang, “Contrastive learning for blind super-
resolution via a distortion-specific network,” IEEE/CAA J. Autom.
Sinica, early access, Sep. 6, 2022, doi: 10.1109/JAS.2022.105914.

C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., May 2017, pp. 4681-4690.

Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 2472-2481.

M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection
networks for super-resolution,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 1664-1673.

Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vis., Dec. 2018, pp. 286-301.

T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order
attention network for single image super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11065-11074.

B. Niu et al., “Single image super-resolution via a holistic attention
network,” in Proc. Eur. Conf. Comput. Vis., May 2020, pp. 191-207.
Y. Mei, Y. Fan, and Y. Zhou, “Image super-resolution with non-
local sparse attention,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 3517-3526.

K. C. K. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy, “GLEAN:
Generative latent bank for large-factor image super-resolution,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 14245-14254.

T. Akgun, Y. Altunbasak, and R. M. Mersereau, ‘“‘Super-resolution
reconstruction of hyperspectral images,” IEEE Trans. Image Process.,
vol. 14, no. 11, pp. 1860-1875, Nov. 2005.

J. Li, Q. Yuan, H. Shen, X. Meng, and L. Zhang, “Hyperspectral
image super-resolution by spectral mixture analysis and spatial-spectral
group sparsity,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9,
pp. 1250-1254, Sep. 2016.

W. Xie, X. Jia, Y. Li, and J. Lei, “Hyperspectral image super-resolution
using deep feature matrix factorization,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 8, pp. 6055-6067, Aug. 2019.

Q. Li, Y. Yuan, and Q. Wang, “Hyperspectral image super-resolution via
multi-domain feature learning,” Neurocomputing, vol. 472, pp. 85-94,
Feb. 2022.

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted
pixel camera: Postcapture control of resolution, dynamic range, and
spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241-2253,
Sep. 2010.

B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal
from natural RGB images,” in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 19-34.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[49] N. Yokoya and A. Iwasaki, “Airborne hyperspectral data over
Chikusei,” Space Appl. Laboratory, Univ. Tokyo, Tokyo, Japan,
Tech. Rep. SAL-2016-05-27, May 2016.

[50] K.Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-
resolution network for multiple degradations,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3262-3271.

Xinya Wang received the B.S. degree from the
Electronic Information School, Wuhan University,
Wauhan, China, in 2018. She is currently pursuing
the Ph.D. degree with the Multi-Spectral Vision
Processing Laboratory, Wuhan University.

Her research interests include neural networks,
machine learning, and image processing.

Qian Hu received the B.S. degree from the
Electronic Information School, Wuhan University,
Wauhan, China, in 2022, where he is currently pur-
suing the master’s degree.

His research interests include computer vision and
image processing.

Junjun Jiang (Senior Member, IEEE) received
the B.S. degree from the Department of Math-
ematics, Huaqiao University, Quanzhou, China,
in 2009, and the Ph.D. degree from the School
of Computer, Wuhan University, Wuhan, China,
in 2014.

He is currently a Professor with the School of
Computer Science and Technology, Harbin Insti-
tute of Technology, Harbin, China. His research
interests include image processing and computer
: vision.

Dr. Jiang won the Finalist of the World’s FIRST 10 K Best Paper Award
at ICME 2017 and the Best Student Paper Runner-up Award at MMM 2015.
He received the 2016 China Computer Federation (CCF) Outstanding Doctoral
Dissertation Award and the 2015 ACM Wuhan Doctoral Dissertation Award.

Jiayi Ma (Senior Member, IEEE) received the B.S.
degree in information and computing science and the
Ph.D. degree in control science and engineering from
the Huazhong University of Science and Technology,
Wuhan, China, in 2008 and 2014, respectively.

He is currently a Professor with the Electronic
Information School, Wuhan University, Wuhan.
He has authored or coauthored more than 200 ref-
ereed journal articles and conference papers, includ-
ing IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, IEEE TRANSAC-
TIONS ON IMAGE PROCESSING, International Journal of Computer Vision
(IJICV), CVPR, ICCV, and ECCV. His research interests include computer
vision, machine learning, and pattern recognition.

Dr. Ma has been identified in the 2019-2021 Highly Cited Researcher lists
from the Web of Science Group. He is also an Area Editor of Information
Fusion and an Editorial Board Member of Neurocomputing.

Authorized licensed use limited to: Wuhan University. Downloaded on February 21,2023 at 09:08:03 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/JAS.2022.105914

