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A B S T R A C T

Light field imaging has drawn broad attention since the advent of practical light field capturing systems
that facilitate a wide range of applications in computer vision. However, existing learning-based methods
for improving the spatial resolution of light field images neglect the shifts in the sub-pixel domain that are
widely used by super-resolution techniques, thus, fail in recovering rich high-frequency information. To fully
exploit the shift information, our method attempts to learn an epipolar shift compensation for light field image
super-resolution that allows the restored light field image to be angular coherent with the enhancement of
spatial resolution. The proposed method first utilizes the rich surrounding views along some typical epipolar
directions to explore the inter-view correlations. We then implement feature-level registration to capture
accurate sub-pixel shifts of central view, which is constructed by the compensation module equipped with
dynamic deformable convolution. Finally, the complementary information from different spatial directions is
fused to provide high-frequency details for the target view. By taking each sub-aperture image as a central
view, our method could be applied for light field images with any angular resolution. Extensive experiments
on both synthetic and real scene datasets demonstrate the superiority of our method over the state-of-the-
art qualitatively and quantitatively. Moreover, the proposed method shows good performance in preserving
the inherent epipolar structures in light field images. Specifically, our LFESCN method outperforms the
state-of-the-art method with about 0.7 dB (PSNR) on average.
. Introduction

Emerging as a promising technology, light field (LF) imaging has
acilitated a variety of applications, ranging from the virtual reality
ield to computer vision applications. Different from conventional pho-
ography, the resulting LF image records not only intensity values at
ach position but also directions of rays from real-world scenes. This
bundant spatial–angular information makes many novel applications
ossible, such as post-capture refocusing [1], stereoscopic display [2]
nd single-shot depth sensing [3,4], especially after the advent of
ommercial portable LF camera (e.g. Lytro1 and Raytrix2). As displayed
n Fig. 1(a), by inserting an additional optical component like the
icro-lens between the main lens and the camera sensor, the handheld
lenoptic camera can capture a scene from multiple views in a single
hot. The output of the camera sensor is composed of many micro-
mages under each micro-lens, which is enlarged in Fig. 1(b). The
ub-aperture images can be further converted from the effective pixels
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in the camera sensor output. In Fig. 1(c), the same lines are extracted
in the sub-aperture images horizontally and vertically to show the
sub-pixel shifts among sub-aperture images. However, the recorded LF
image is equipped with a high angular resolution at the expense of
spatial resolution, which limits the range of potential development.

Generally, the LF image presents different view information in sub-
aperture images with sub-pixel shifts in a narrow baseline so that there
exist strong correlations among them, which provide the redundant
data used generally by super-resolution (SR) techniques. As the internal
similarity performs well in depth continuous region [5], traditional
methods [6–13] for LF image SR first rely on the intrinsic imaging
consistency, which explores the depth information to warp or register
the sub-aperture images, and then different image priors are utilized
to regularize the SR reconstruction process. Obviously, the disparity
estimation is crucial for these approaches, and any defect in the depth
computation or the image-level wrapping operation may introduce
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Fig. 1. Schematic of micro-lens based LF imaging. (a) Simple diagram of light field image. (b) Camera sensor output: we zoomed in on a small area to show the characteristics
of light field imaging. (c) The sub-aperture image: to show differences between sub-aperture images (SAIs), we extracted lines horizontally (bottom of SAIs) and vertically (left of
SAIs) along the red lines for visualization.
significant artifacts. Besides, the consistency is not always kept well
especially in the occlusion and specular reflection regions. Recently,
several learning-based methods [14–19] have been proposed for LF
SR, in which the corresponding relations are implicitly excavated for
different view combinations. Nevertheless, on the one hand, they are
deficient in capturing the sub-pixel shifts that are provided by disparity
information among different view images, resulting in the worse per-
formance in occlusions and conterminous boundaries, as illustrated in
Fig. 2. On the other hand, these methods restrict to LF images with
specific angular resolution or multiple models should be trained to
super-resolve single LF image.

To alleviate the above issues, we tailor a flexible and effective
LF SR method in this paper, which is implemented by an epipolar
shift compensation network, denoted as LFESCN. Specially, we take
advantage of multiple sampling with parallax shifts in different epipolar
directions, which provide redundant information generally used by
super-resolution techniques. As the internal similarity performs well
in the depth continuous region [5], we register multiple views from
epipolar directions to the central view to capture the central sub-pixel
shifts that are mapped from angular space, which contributes to the re-
construction of high-frequency details. Through explicitly exploring the
coherent relations, the geometry structures that are made up by oblique
lines in epipoplar plane images (EPIs) could be better preserved. To
avoid the defects of explicit depth estimation and wrapping operation,
the compensation module with dynamic deformable convolution is
deployed for alignment in the feature domain. Concretely, taking the
features from supporting and central views as input, this module could
generate not only position-specific but also sample-specific offsets of
deformable convolution kernels by dynamic filtering. In this way, the
proposed LFESCN would have strong capability and flexibility to cope
with various imaging scenes, rather than depend on imaging consis-
tency. Finally, sub-pixel mappings from different directions are fed into
the reconstruction module for feature fusion [21,22], which could pro-
vide complete residual information for the final super-resolved central
view. Considering each sub-aperture image as a central view, we can
easily generate the whole super-resolved LF image with any angular
resolution. We conduct extensive experiments on both synthetic and
real scene LF image datasets. The experimental results show that our
framework achieves state-of-the-art performance.

The contributions of this paper are three-fold. (i) We propose a
compensation module for feature-level registration of multiple LF views
based on dynamic deformable convolution. It enables the network to
explicitly capture the accurate sub-pixel shifts from epipolar directions
rather than implicitly mapping. (ii) A flexible and effective framework
is designed for super-resolving LF image of any angular resolution,
which could preserve the inherent epipolar property better. (iii) Exten-
sive experiments on both synthetic and real scene LF image datasets
demonstrate our state-of-the-art performance compared to other LF SR
methods.
189
2. Related work

2.1. Multi-image SR

Given multiple low-resolution images, the multi-image SR is a more
general task to fuse and reconstruct one plausible image of high-
resolution from unordered sets with unknown timestamps, not se-
quences or video. Tsai et al. [23] pioneered reconstructing a high-
resolution image by fusion of low-resolution images in the Fourier
domain with the assumption that their phase shifts are known. How-
ever, with the unknown shifts in practice, the fusion problem should
be solved in conjunction with the registration problem [24,25].

Traditionally, optimization-based methods have assumed prior
knowledge to constrain the parameter search space and derive ob-
jective functions, such as total variation [26] and Tikhonov regular-
ization [27]. With the development of the nonparametric strategies,
patch-based methods rely on sparse coding and dictionary learning to
form high-resolution images directly from low-resolution patches [28,
29]. Although deep learning methods are widely used in many tasks,
few deep-learning approaches have attempted to solve the multi-image
SR problem in an end-to-end learning framework. In [30], the first
fully end-to-end architecture for multi-image SR is introduced to jointly
learn and co-adapt the fusion and (co-)registration tasks to one another.
Recently, several deep learning methods are proposed to tackle the
multi-image SR problem without registration [31–33].

Although the light field image is composed of multiple sub-aperture
images, in the light field SR, the model uses the internal information
of the light field image to restore the entire high-resolution one.

2.2. LF SR

Since LF image records scene information from different angles,
most LF SR methods take advantage of this rich information in the
angular domain to recover missing texture details in the spatial domain.
Existing methods could be divided into three categories: projection-
based, optimization-based, and learning-based, referring to [5,16–18].

Projection-based method: Projection-based methods focus on pro-
jection and resample of LF data, depending on the imaging principles of
light field cameras. As first introduced by Lim et al. [34], the sub-pixel
shift of redundant views in angular space could be mapped into spatial
space by projecting them onto convex sets, which benefits for spatial
resolution enhancement. Focusing on the focal stack transformation
problem, Nava et al. [35] exploited the refocusing principle and pro-
jected pixels from other views to the central view to get an all-in-focus
in high resolution space. Similarly, Pérez et al. [36,37] proposed the
Fourier slice super-resolution to get the super-resolved discrete focal
stack transform. In [38], Georgiev and Lumsdaine established sub-pixel
correspondences with the projection scheme for the focused plenotic
cameras. Besides, Liang et al. [39] demonstrated that typical lenslet
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Fig. 2. The super-resolved central view of the LF image Buddha from HCI1 [20] at the upscaling factor 2. Our results of the central view images and epipolar plane images
surpass the other state-of-the-art methods with higher PSNR values. As highlighted in the red box, the proposed method LFESCN could recover more texture details, especially in
occlusion and reflection areas, while the others exhibit artifacts with different degrees or a faint mark. Moreover, to some extent, the inherent epipolar property in EPIs has been
well preserved compared to other methods.
LF cameras preserve frequency components above the spatial Nyquist
rate and performed spatial super-resolution with the guidance of depth
information to project the LF samples to the target view. To relieve
the dependency of camera parameters and depth information, Wang
et al. [40] redefined the mapping function between the disparity of
certain pixel and its shearing shift in the projection-based methods.
The limitation of these methods is that only considering the internal
similarity among different views could not restore rich texture.

Optimization-based method: This kind of methods first estimate
depth or disparity information and rely on different priori hypotheses,
thus the super-resolved LF images are found by various optimization
frameworks. Bishop et al. [6,7] explicitly recovered the depth map
and solved spatial light field super-resolution problem by a varia-
tional Bayesian framework with Lambertian reflectance priors. In [8],
a disparity-dependent Gaussian mixture model was proposed as alter-
native and the super-resolved LF images were reconstructed by linear
minimum mean square error estimator. Wanner and Goldluecke [41]
estimated the disparity maps from the epipolar images (EPIs) with
structure tensor-based method and conducted both spatial and angu-
lar SR in a variational optimization procedure. Recently, Rossi and
Frossard et al. [9,10] coupled the multi-frame SR method with a graph
regularizer to enforce the geometrical consistency of LF image, which
avoids the explicit disparity estimation. Inspired by LFBM5D used
for light field denoising, a new method proposed in [42] iteratively
alternates between LFBM5D filtering and back-projection for LF SR.
The performance of optimization-based methods to some extend are
determined by accuracy of depth information. Furthermore, the shal-
low heuristic model has restricted capacity of reconstructing complex
structures.

Learning-based method: Due to the extensive LF datasets,
learning-based methods have emerged recently. Early, the proposed
method in [43] learned a linear mapping between the LR and HR
in a low dimensional subspace with ridge regression (RR). With the
prosperity of deep learning, LFCNN [44] was the first CNN-based LF
SR method introduced by Yoon et al. where they sent four tuples of
sub-aperture image stacks into the SRCNN [45] architecture to jointly
increase the spatial and angular resolution. To get better results, Fan
190
et al. [46] developed a two-stage CNN framework, in which different
sub-aperture images are aligned by patch matching in the first stage and
a multi-patch fusion CNN is used in the second stage. Subsequently,
a shallow CNN model was used to super-resolve the LF raw data di-
rectly from plenoptic cameras without decoding to sub-aperture images
in [47]. Regarding an LF image as a sequence of 2D images, LFNet [14]
was developed to model the spatial correlation between adjacent
views in a bidirectional recurrent way and accumulated contextual
information from multiple scales with a specially designed fusion layer.
With a combined CNN architecture, Yuan et al. [15] designed an EPI
enhancement network as the post-procedure of EDSR [48] conducting
on single view of LF image. Inspired by epipolar geometry used for
depth estimation, Zhang et al. [16] grouped different image stacks into
different branches to super-resolve the central view by residual learning
in several position-specific model. In [17], each view of an LF image
is first individually super-resolved by exploring the complementary
information and the whole parallax relationship is enforced by a
regularization network. Recently, Wang et al. [18] proposed a spatial–
angular interactive network to extract spatial and angular features
separately. In [19], the 4D LF image is rearranged into the 2D macro-
pixel image to fully exploit spatial–angular correlations. However,
most of them neglect sub-pixel shifts in multiple angular directions or
implicitly exploit the relations by stacking them together. Therefore,
our proposed method makes full use of the view information from all
directions by deploying the dynamic deformable convolution in the
compensation module to capture the sub-pixel shifts explicitly. In this
way, our method can not only recover rich details even in handling
complex scenes but also performs well in preserving the epipolar
property.

2.3. Deformable convolution

Equipped with a regular grid of the filter configuration, the CNN
has the inherent limitation in modeling irregular geometric transforma-
tions. For improving the transformation modeling capability of regular
CNN, Dai et al. [49] proposed a deformable convolution operation
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that augments the spatial sampling locations in convolution with ad-
ditional offsets and learns the offsets from target tasks. In practice,
an extra convolution is applied to model the offset function, allow-
ing the deformation to condition on the input in a local, dense and
learnable manner. Hence, it can adaptively learn to model various
transformations. In addition, the deformable convolution is further
improved in [50] which introduces the modulation mechanism into the
standard deformable module to strengthen the capability in manipulat-
ing spatial support regions. Recently, the deformable convolution has
been proven to be superior on many high-level vision tasks such as
object detection [51,52], semantic segmentation [53] and human pose
estimation [54]. Besides, the deformable convolution is also succeeded
in video SR problem [55–58]. Inspired by [55] which used it to im-
plement temporal alignment, we design the compensation module to
map the sub-pixel shifts from angular space to spatial space, which is
demonstrated to be beneficial for the enhancement of spatial resolution.

3. Methodology

3.1. Overview

Since an LF image records a scene in multiple views with different
angular resolutions, it is unrealistic to take all sub-aperture images
into consideration when only working on improving spatial resolution.
The existing learning-based algorithms for LF SR are dedicated to
constructing complicated frameworks to super-resolve the whole LF
image through either generating sub-aperture images recurrently in the
vertical and horizontal ways [14] or adopting different models to the
view in the specific location [16]. For sub-aperture images, they cannot
be treated equally because of the unbalanced auxiliary information or
the specific order. In this way, the performance of edge views would
suffer from decay to some extent. Meanwhile, for LF images with
different angular resolutions, these methods should be trained from
scratch. To this end, as shown in Fig. 3, we consider the multiple
views from different directions as the epipolar constraint to super-
resolve the central view. Ideally, in the case of Lambertian hypothesis,
the internal correlation among different sub-aperture images appears
as imaging consistency when recording the same scene. That is, the
surrounding view can be obtained from the central view with disparity
information and its viewing location. Owing to the regular arrangement
of the micro-lens, the disparity information among the LF image can be
approximately modeled in a linear relationship [5]. Consequently, we
stack multiple views from the same directions as auxiliary inputs. In
order to fully exploit inter-view correlations, the compensation module
is designed for feature-level registration of multiple LF views, which
is supposed to map the parallax shifts in all epipolar directions from
angular space to spatial space. In this way, our method could capture
more accurate sub-pixel shifts that are beneficial for the high-frequency
information recovery. By taking each view as the central view, our
method could handle the LF image with different angular resolutions
flexibly.

Suppose 𝐿𝐿𝑅 ∈ R𝑈×𝑉 ×𝐻×𝑊 ×𝐶 is the low-resolution (LR) LF image,
and 𝐿𝐻𝑅 ∈ R𝑈×𝑉 ×𝑠𝐻×𝑠𝑊 ×𝐶 is the corresponding high-resolution (HR)
F image with the upscale factor 𝑠. The goal of our method is to
econstruct each sub-aperture image 𝐼𝑆𝑅𝑢,𝑣 from the reference LR view-
oint 𝐼𝐿𝑅𝑢,𝑣 and supporting views along epipolar directions. Generally,
he strictly equidistant lattice configuration of the sub aperture image
esults in the parallax of light field image along each angular dimen-
ion. Thereby, as illustrated in Fig. 3, we divide multiple views into
our different stacks {𝐼𝐿𝑅0◦ , 𝐼𝐿𝑅45◦ , 𝐼

𝐿𝑅
90◦ , 𝐼

𝐿𝑅
135◦} according to relative angular

osition and each stake concatenates six sub-aperture images directly
ecause of the narrow baseline. Thus, our LFESCN framework adopts
our LR stacks as auxiliary information to predict the central HR view:

𝑆𝑅 𝐿𝑅 𝐿𝑅 𝐿𝑅 𝐿𝑅 𝐿𝑅
191

𝑐 = 𝐸𝑆𝐶𝑁 (𝐼𝑐 , 𝐼0◦ , 𝐼45◦ , 𝐼90◦ , 𝐼135◦ ; 𝜃), (1)
here 𝜃 represents the parameters of our method. Through changing
𝑢, 𝑣) coordinate of the central view, we super-resolve each sub-aperture
mage separately to generate the whole LF image with the enhancement
f spatial information. For the edge sub-aperture image with some
issing supporting views, we would reuse the existing views according

o the corresponding angular direction to form a complete input stack,
s shown in the bottom left of Fig. 3. In this way, all LR views are
upported by equivalent view information, recovering as much texture
s possible.

.2. Network design

Along one angular direction, the multiple viewpoints embody sub-
ixel shifts from a specific direction in the spatial domain because of the
cclusion and angle of view. Based on this observation, we construct
ulti-stream branches to process each image stack separately at the

eginning of our network. Subsequently, in order to make full use of
oth intra-view spatial correlations and inter-view angular correlations,
ach branch is aligned with the central target view in the feature
omain. Due to the different occlusions and photometric changes in the
cene, a specific filter is generated for each spatial position of the input
o cope with different deformations. Instead of optical estimation for
otion, the offsets of sampling convolution kernels are more suitable

or the changes in a narrow baseline. In this manner, the disparity
nformation is implicitly exploited to find out accurate sub-pixel shifts
etween each stack and the target view, which would be mapped into
esiduals from different directions.

As depicted in Fig. 3, our LFESCN network takes five branches
s input. For the target view, after one convolution layer to extract
he shallow feature, we adopt a feature extraction module to acquire
igh-level information, which can be formulated as:

𝑐 = 𝑓𝑐 (𝐼𝐿𝑅𝑐 ), (2)

𝑐 = 𝐻𝑒(𝐹𝑐 ), (3)

n which 𝑓𝑐 denotes the common convolution layer operated on the
entral view and 𝐻𝑒 is operation of the extraction module. For other
ranches, the corresponding features are generated by the same way:

𝑎 = 𝐻𝑒(𝑓𝑎(𝐼𝐿𝑅𝑎 )), 𝑎 ∈ {0◦, 45◦, 90◦, 135◦}, (4)

where 𝑓𝑎 denotes the common convolution layer operated on the
supporting branches and the subscript 𝑎 represents a specific angular
direction, that is 𝑎 ∈ {0◦, 45◦, 90◦, 135◦}. Since the simplified residual
block [48] shows the outstanding performance in SR task, we employ
𝑘 blocks with 𝑚 feature maps in the extraction module to extract the
rich feature representation. The extracted features will be utilized for
feature-wise registration.

Afterwards, we apply a compensation module to features from one
auxiliary branch and the central branch, which is supposed to perform
registration in the feature domain to get accurate spatial sub-pixel
shifts. Thus, we would have the aligned features 𝑀 ′

𝑎 from one angular
direction to the target view as follows:

𝑀 ′
𝑎 = 𝐻𝑐 (𝑀𝑎,𝑀𝑐 ), 𝑎 ∈ {0◦, 45◦, 90◦, 135◦}, (5)

in which 𝐻𝑐 represents the compensation module, as detailed in Sec-
tion 3.3.

After achieving the alignment of sub-pixel shifts, we fuse all the
features in a concatenating way and further feed them into the recon-
struction module. Since the different branch contains the shift from
a specific direction, we integrate the fusing shift information in the
reconstruction module to produce the residual of central view:

𝑅𝑐 = 𝐻𝑟([𝑀𝑐 ,𝑀
′
0◦ ,𝑀

′
45◦ ,𝑀

′
90◦ ,𝑀

′
135◦ ]), (6)

where 𝐻𝑟 denotes the reconstruction module. In this module, the

stacked aligned features are taken as input to predict the deep features,
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Fig. 3. The overall structure of the proposed LFESCN network. For the central view 𝐼𝐿𝑅
𝑐 , along different directions, six images are stacked into 𝐼𝐿𝑅

𝑎 , 𝑎 ∈ {0◦ , 45◦ , 90◦ , 135◦} as
epipolar constraint to super-resolve the central view. By taking each view as the central view, our method could reconstruct the high-resolution LF image flexibly. For the edge
sub-aperture image with some missing surrounding views, existing views are reused according to the corresponding angular direction to form a complete input stack. The bottom
left plot shows an example of this procedure for the bottom left sub-aperture image with a red mask. The views with masks of the same color are the same sub-aperture image,
and the one with a dotted box is a duplicate of the corresponding original sub-aperture image.
and 𝑘 residual blocks followed by one convolutional layer are used for
fusing the feature shifts from different directions. Therefore, the global
residual would possess auxiliary information from all directions to yield
the HR central view. Therefore, we can produce the super-resolved
central view by:

𝐼𝑆𝑅𝑐 = 𝐻𝑢𝑝(𝐹𝑐 + 𝑅𝑐 ), (7)

among which 𝐻𝑢𝑝 represents the upscaling module to improve the
spatial resolution. Same as the common upscaling module in single
image SR network, we adopt an upscaling layer to increase the reso-
lution of the feature map with a sub-pixel convolution as proposed by
Shi et al. [59].

In this way, our method would fully excavate the angular correla-
tions among sub-aperture images to aid the super-resolution process
and meanwhile preserve the inherent properties of LF image.

3.3. Compensation module

In contrast to the traditional method of depth estimation followed
by wrapping, we realize the alignment on feature level to implicitly
utilize parallax information. In the video SR task, optical flow is widely
estimated to capture the motion from the reference frame to the target
frame. However, in the LF image, there is no large movement between
sub-aperture images, but parallax shifts of several pixels due to occlu-
sion and angle of view. Accordingly, we tailor a compensation module
to capture the accurate sub-pixel shifts by registering the supporting
views to the central view, where the position-specific filters are learned
to produce the offsets of specific supporting views for the deformable
convolution, as shown in Fig. 4.

In the compensation module, taking the 𝑀𝑎 and 𝑀𝑐 as input, we
aim to predict the corresponding aligned LR feature 𝑀 ′

𝑎 for the target
view. Inspired by [60], first, we generate the filters for every position
of features from the adjacent views via a filter-generating network as
follows:

𝑊𝑎 = 𝐻𝑓𝑔([𝑀𝑐 ,𝑀𝑎]), (8)

where 𝑊𝑎 is the weight of the learned filter applied for the supporting
views and 𝐻𝑓𝑔 represents the filter-generating network that shares the
same insight from U-Net. Particularly, the spatial size of 𝑊 is the same
192

𝑎

Fig. 4. The compensation module of our proposed LFESCN.

as the input so that the filtering operation is not translation invariant
anymore. Instead, different filters are applied to the specific positions
of 𝑀𝑎 to acquire the offset. For each position (𝑖, 𝑗) of the input 𝑀𝑎, a
specific local filter 𝑊 (𝑖,𝑗)

𝑎 is applied to the region centered around 𝑀 (𝑖,𝑗)
𝑎 ,

which is expected to produce the offset:

𝑂(𝑖,𝑗)
𝑎 =

∑

𝑊 (𝑖,𝑗)
𝑎 𝑀 (𝑖,𝑗)

𝑎 . (9)

In this way, the filters used in this layer are not only sample specific
but also position specific to deal with the photometric change. Subse-
quently, the deformable layer could be applied for the corresponding
features and we can obtain the aligned features from:

𝑀 ′
𝑎 = 𝑓𝑑𝑐 (𝑀𝑎, 𝑂𝑎), (10)

in which 𝑓𝑑𝑐 denotes the deformable convolution. As the common
convolutional layer has a regular grid of a 3 × 3 kernel size, e.g.
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 = {(−1,−1), (−1, 0),… , (0, 1), (1, 1)}, 𝑂𝑎 would offer the offsets of
eformable convolution kernels, that is 𝑂𝑎 = {▵ 𝑝𝑛|𝑛 = 1,… , ||}.

Therefore, for each location 𝑝0 on the aligned feature maps 𝑀 ′
𝑎, we

ave:
′
𝑎(𝑝0) =

∑

𝑝𝑛∈
𝑤(𝑝𝑛)𝑀𝑎(𝑝0 + 𝑝𝑛+ ▵ 𝑝𝑛), (11)

here 𝑝𝑛 enumerates the locations in . In this process, the sampling
ernel is operated on irregular grid 𝑝𝑛+ ▵ 𝑝𝑛, where ▵ 𝑝𝑛 might be
ractional. Same as that proposed in [49], Eq. (11) is implemented by
ilinear interpolation. Through an irregular respective field, this com-
ensation module could capture the sub-pixel shift from all epipolar
irections, which would benefit for the SR process.

.4. Implementation details

For both the extraction and reconstruction modules, each residual
lock has two convolutional layers with a rectified linear unit inserting
etween them. In all convolutional layers, we choose 3 × 3 as the kernel
ize and pad zero to avoid border effects. Experimentally, we set 𝑘 = 8
nd 𝑚 = 64. Thus, in the reconstruction module, the layers have 64 × 5
eature maps after concatenating features from all directions. To control
odel size, five branches share the parameter except for the first convo-

utional layer. In the filter-generating network, six layers are deployed
ith the filter numbers of {64, 32, 16, 32, 64, 64 × 9}. Since the last layer
roduces the position-specific filters for the features from supporting
iews, each position is equipped with the 3 × 3 respective field. Our
etwork deals with RGB images so that the input and output channel
s 3 and we use the 𝐿1 loss function to generate better performance
ompared to 𝐿2 loss.

For the training phase, we empirically set a mini-batch size of 16
ith the spatial size of 48 × 48 as inputs and employ Adam optimizer
ith weight decay of 1𝑒−4 to train our model. All weights of the

ayers in our network are initialized by Xaviers algorithm [61]. The
earning rate is initialized as 1𝑒−3 and is decayed by 10 times after 100
pochs until the validation loss converges. Our model is implemented
y Pytorch on NVIDIA GTX 1080Ti. An LF image with the resolution
f 512 × 512 × 7 × 7 × 3 can be spatially super-resolved within 1.5 s at
he scale 2, roughly 0.03s per sub-aperture image. The source code and
xperimental datasets to reproduce the super-resolved results will be
eleased upon the acceptance of submission.

. Experiments and results

.1. Datasets and settings

To validate the effectiveness of our proposed LF SR method, we
onduct extensive experiments on both synthetic and real scene light
ield datasets. The synthetic LF images from [20,62] and real scene LF
mages [63–65] from Lytro Illum cameras are collected as a dataset,
hich contains rich LF scenes, various in spatial and angular resolution.
pecifically, for a fair comparison, we select Buddha and Mona in
he synthetic LF dataset HCI1 [20] into the test set on purpose. The
emaining images are randomly divided: two images for validation and
ix images for training. In the synthetic LF dataset HCI2 [62], we use
re-divided LF images and there are 16, 4, and 4 LF images in training,
alidation, and test sets, respectively. For the real scene EPFL [63]
ataset, we choose specific 12 images for testing as most existing
ethods do [14,16] and randomly divide 12 images for validation and

he resting 84 images for training. There are 9 kinds of imaging scenes
n the real scene Stanford dataset [64]. For each scene, we select 14
igh-quality images and randomly divide 10, 2, and 2 images into
raining, validation, and test sets. The real scene DDFF dataset [65]
as 6 kinds of imaging scenes and each scene has 10 images, which
re randomly divided into 6, 2, and 2 samples for training, validation,
nd validation for each scene. Consequently, there are in total 250,
193
able 1
he performance and speed of different fusion operators on the test dataset for the
cale factor 2.
Fusion operator Addition Multiplication Pooling Concatenation (Ours)

PSNR (dB) 40.38 40.24 40.32 40.68
Time (s) 0.98 1.02 1.13 1.28

48, 48 images in training, validation and test datasets without overlap.
For any dataset, LF images are cropped with 7 × 7 angular resolution
free from the border effects and then regarded as ground-truth images.
Specifically, we downsample them spatially at the scaling factor 2, 3
and 4 by bicubic interpolation to acquire the LR input. The super-
resolved images are evaluated by widely used measurements: PSNR and
SSIM.

4.2. Ablation study

In order to demonstrate the effectiveness of our proposed LFESCN,
we compare it with the baseline: EDSR [48], which represents the
single image SR model with only target view as input. We train the
EDSR model on the same LF dataset from scratch. In the existing
works [49,55] that involve deformable convolution, more deformable
layers are proved to enhance the capability of the network. Therefore,
we further investigate our LFESCN models with different numbers: 0, 1,
nd 2 of compensation modules, which denote as LFESCNCM𝑋. With-
ut the compensation module, the network LFESCNCM0 just adopts
he adjacent views in five branches to super-resolve the central view,
imilar as the multi-frame SR task.
Effectiveness of the compensation module. Fig. 5 illustrates con-

ergence curves of the aforementioned models, evaluated on the val-
dation set. We could observe: the performance of LFESCNCM0 is
etter than that of EDSR, which indicates that exploiting adjacent
iews even without shift compensation could improve the LF SR per-
ormance. Besides, the proposed method with compensation modules
btains further improvements. The proposed shift compensation net-
ork is more effective in utilizing the information from supporting
iews. However, opposed to other tasks involving deformable convolu-
ion, more compensation modules do not enhance the capacity of our
FESCN. Considering the narrow baseline in sub-aperture images of LF,
he parallax is generally around a few pixels according to the scene.
hus, more compensation modules that could capture long-distance
ependency or large motion is redundant in the LF SR task.
Effectiveness of the fusion operator. In our proposed method, we

use all the features in a concatenating way and further feed them into
he reconstruction module. To verify the effectiveness of this fusion
perator, we replace the concatenation operation with addition, mul-
iplication, and pooling. The performance and speed of these variants
re evaluated on the test dataset at the scale factor 2, which is demon-
trated in Table 1. For the addition and the multiplication operations,
e directly replace the concatenation in Fig. 3. Although the use of
ddition and multiplication can reduce the burden of the network to
certain extent, these two fusion patterns cannot make full use of

he extracted auxiliary information, resulting in poor reconstruction
erformance. For pooling operation, we deploy 1 × 1 convolution
ayer for channel reduction and fusion to replace the concatenation
peration and the ‘‘pooling" method could achieve better results due
o the trainable advantage. Compared with other ways of fusion, the
oncatenation operator acquires a large performance gain with a slower
unning time. However, our method is proved to be faster than other
ompared methods.
Visualization of sampling positions. To further verify the effec-

iveness of the compensation module, we visualize the sampling posi-
ions based on learned offsets to demonstrate how the compensation
odule explicitly capture the accurate sub-pixel shifts. As displayed in

ig. 6, two representative regions (3 × 3 pixels) from each central view
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Fig. 5. Convergence analysis of LFESCN with different numbers of compensation
modules and one baseline: EDSR [48]. The curves show PSNR values of different models
on the validation dataset for 9 × 104 iterations.

of the LR LF image are selected and we show sampling positions on
the last views from each supporting stack rather than feature maps for
better visualization. Since one layer with 3 × 3 kernels is used to sample
features from surrounding views for feature-level registration, each
output pixel corresponds to 9 learned sampling points. We can see that
sampling positions tend to capture visual regions of different shapes
containing similar content rather than scanning over the whole objects.
Besides, for views from different stacks, the compensation module can
adaptively capture the shifts in different directions.

Influence of sub-aperture images. We also investigate the in-
fluence of sub-aperture images with different numbers. For a fair
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comparison, the number of parameters and the architectures of the
networks are kept the same with the original network except for the
input channel of the first convolution layer. The quantitative compar-
isons on the test dataset at the scale factor 2 are illustrated in Table 2.
In can be seen that even only with two views in a stack, our results
are better than that of resLF [16] (39.64∕0.9842). Besides, both more
auxiliary stacks and more views from the same direction could bring
greater performance improvements. Nevertheless, with the increase
in distance, the performance improvement of more auxiliary inputs
decreases gradually. As most LF images have 7 × 7 angular resolution,
we use six views in a stack to get the best performance.

4.3. Comparison methods

For comprehensive comparison, the results of representative meth-
ods are compared, including three categories: (1) single image SR meth-
ods: bicubic interpolation (Bicubic) and EDSR [48]; (2) optimization-
based LF SR method: GB [9]; (3) learning-based LF SR methods:
RR [43], LFNet [14], resLF [16], and MPIN [19]. As the EDSR method
is originally trained for single image SR, we train the network on the
same LF dataset from scratch, following the protocol in [48]. GB [9]
method is set the same parameters as in the original paper. For RR [43],
we use the PCA basis and the learned transformation matrix provided
by the authors. As the code of LFNet is released based on Theano, we
use it with the same parameters provided in the paper. Besides, we use
the released models in resLF for testing, and the MPIN method only
performs at scale 2 and 4 according to the original paper.

Due to the fact that the input channel varies in different methods,
we calculate the quantitative index on the Y channel of the SR image
in the YCbCr space.

4.4. Synthetic dataset

As the test dataset consists of a variety of LF scenes, we divide
them into two categories: synthetic dataset and real scene dataset.
Fig. 6. Visualization of the learned sampling positions. For the 3 × 3 regions in the central view, we display the sampling positions on the last views from different directions.
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Table 2
Quantitative comparisons using different numbers of sub-aperture images on test dataset for the scale factor 2. Bold indicates the best result.

Input

Avg.PSNR 39.27 40.08 40.56 40.68
Avg.SSIM 0.9839 0.9861 0.9866 0.9867
Table 3
Detailed comparison on HCI1 dataset of state-of-the-art LF SR algorithms: minimum, average and maximum PSNR/SSIM for scale factors 2.
Bold indicates the best result.
Method Buddha Mona

Min Avg Max Min Avg Max

Bicubic 37.24/0.9445 37.45/0.9464 37.76/0.9488 37.28/0.9520 37.42/0.9529 37.53/0.9536
RR [43] 37.81/0.9497 37.99/0.9518 38.31/0.9546 38.09/0.9573 38.27/0.9592 38.46/0.9626
GB [9] 38.57/0.9582 39.04/0.9606 39.29/0.9626 38.81/0.9649 39.05/0.9663 39.22/0.9675
LFNet [14] 38.09/0.9709 38.42/0.9731 38.77/0.9760 38.38/0.9884 38.73/0.9891 38.80/0.9895
resLF [16] 38.71/0.9744 39.82/0.9825 40.94/0.9866 39.30/0.9809 41.19/0.9879 42.20/0.9907
EDSR [48] 39.31/0.9827 39.62/0.9837 39.99/0.9846 41.15/0.9890 41.32/0.9892 41.47/0.9894
MPIN [19] 39.78/0.9842 40.31/0.9864 40.70/0.9878 41.93/0.9904 42.25/0.9912 42.53/0.9919
LFESCN 41.46/0.9901 41.99/0.9907 42.28/0.9913 43.32/0.9932 43.46/0.9935 43.64/0.9937
Table 4
Quantitative evaluation on test dataset of state-of-the-art LF SR algorithms: average PSNR/SSIM for scale factors 2, 3 and 4. Bold indicates the
best result.
Method Scale Synthetic dataset Real scene dataset

HCI1 [20] HCI2 [62] EPFL [63] Stanford [64] DDFF [65]

Bicubic ×2 37.43/0.9497 32.89/0.8903 32.42/0.9275 37.24/0.9539 35.45/0.9240
RR [43] ×2 38.13/0.9555 33.40/0.8979 33.54/0.9339 37.46/0.9547 35.96/0.9230
GB [9] ×2 39.04/0.9634 34.96/0.9278 31.45/0.8896 38.82/0.9647 36.15/0.9293
LFNet [14] ×2 38.57/0.9811 33.73/0.9544 33.73/0.9715 38.26/0.9834 36.72/0.9718
resLF [16] ×2 40.50/0.9852 36.38/0.9764 37.33/0.9815 42.53/0.9909 38.58/0.9780
EDSR [48] ×2 40.47/0.9864 35.48/0.9656 37.20/0.9788 41.47/0.9897 38.69/0.9790
MPIN [19] ×2 41.28/0.9888 36.89/0.9776 37.68/0.9816 41.93/0.9923 38.37/0.9768
LFESCN ×2 42.73/0.9920 37.34/0.9776 39.22/0.9862 43.17/0.9926 39.16/0.9804

Bicubic ×3 34.31/0.8980 30.27/0.8148 29.74/0.8677 33.79/0.9046 33.31/0.8635
RR [43] ×3 35.18/0.9136 30.91/0.8329 30.77/0.8845 34.34/0.9127 32.81/0.8711
GB [9] ×3 35.43/0.9187 31.55/0.8535 30.59/0.8896 34.81/0.9211 32.74/0.8724
LFNet [14] ×3 34.88/0.9597 30.58/0.9124 30.28/0.9391 34.23/0.9575 32.96/0.9397
EDSR [48] ×3 36.80/0.9683 32.09/0.9309 33.98/0.9612 36.78/0.9716 34.73/0.9531
LFESCN ×3 38.26/0.9778 33.37/0.9482 34.62/0.9690 38.14/0.9782 35.12/0.9564

Bicubic ×4 32.40/0.8499 28.82/0.7599 28.15/0.8162 31.86/0.8616 30.44/0.8130
RR [43] ×4 33.24/0.8702 29.40/0.7788 29.00/0.8354 32.36/0.8708 30.91/0.8221
GB [9] ×4 33.37/0.8741 29.75/0.7939 28.84/0.8380 32.62/0.8783 30.89/0.8238
LFNet [14] ×4 33.14/0.9396 29.30/0.8836 28.90/0.9125 32.49/0.9365 31.15/0.9107
resLF [16] ×4 34.93/0.9506 30.65/0.9134 31.27/0.9405 34.30/0.9530 32.15/0.9268
EDSR [48] ×4 34.55/0.9471 30.33/0.9002 32.03/0.9396 34.15/0.9510 32.38/0.9245
MPIN [19] ×4 35.56/0.9604 31.12/0.9186 31.41/0.9456 34.65/0.9552 32.58/0.9294
LFESCN ×4 35.89/0.9623 31.14/0.9189 32.45/0.9472 35.02/0.9586 32.77/0.9302
HCI1 [20] and HCI2 [62] are the synthetic datasets, which contain
2 and 4 samples, respectively. Specially, Table 3 exhibits the detailed
comparisons of image Buddha and Mona in HCI1 [20], where the
minimum, average and maximum PSNR and SSIM at the magnification
factor 2 are provided. It can be noticed that the result of resLF varies
reatly in different views, where the maximum exceeds the minimum
early 3 dB of PSNR value even if the average value is higher than
hat of EDSR. Since in resLF, the model used for SR differs in view
osition and sample number, the auxiliary information is unbalanced
or each view, and thus resLF suffers from diversity in performance
mong different views. Our method outperforms the other methods
ith more than 1.5 dB (PSNR) in Buddha and 1.2 dB (PSNR) in Mona.
lthough the differences in our super-resolved view images are bigger

han that of EDSR, the minimum values of our method are still higher
han their maximum values. In the meanwhile, the first two columns
f Table 4 illustrate the average quantitative indexes of six methods
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evaluated on the synthetic dataset at the upscaling factors 2, 3 and 4.
Based on the results, our proposed method still has advantages over
the state-of-the-art method. We could observe that the deep learning-
based method LFNet performs even worse than the optimized-based
method GB. The reason might be that LFNet learns the super-resolved
images from horizontal and vertical stacks, resulting in insufficient
integration from different directions. Whereas, in the proposed LFESCN,
we utilize multiple views to provide the sub-pixel shift for the central
view. Moreover, the internal similarity is exploited explicitly along all
epipolar directions to integrate sub-pixel shifts, which contributes to
the improvement of spatial resolution.

To demonstrate the effectiveness of our proposed SR method for
synthetic LF data, we also display the reconstruction results of com-
pared methods in Fig. 7 with the ground truth in the last column. Two
representative images are selected: Mona from HCI1 [20] and bedroom

from HCI2 [62] at the scale factor 4 that is regarded as harder SR task.
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Fig. 7. The detailed ×4 super-resolution results for synthetic images Mona and Bedroom. The super-resolved central view images are shown, where the corresponding PSNR values
of central views are illustrated below.
As shown in Fig. 7, our method could recover more texture details or
clear structures which are blurry or destroyed by severe artifacts in
other reconstruction results. Especially, we could observe that even in
reflection surface, our method also behaves well in acquiring gradations
of light and shadow. Owing to the dynamic deformable convolution
in the compensation module, the proposed method could capture the
photometric change from rich views.

4.5. Real scene dataset

The LF images of real scene dataset are captured using plenoptic
cameras. According to their sources, the real scene dataset is classified
into three subsets: EPFL from [63], Stanford from [64] and DDFF
from [65], where there are 12, 18 and 12 LF images, respectively. Eval-
uated on real scene datasets, the last three columns of Table 4 compare
the average quantitative results of different methods at the magnifica-
tion factors 2, 3 and 4. As described in Table 4, the performance of
resLF suppresses that of EDSR on EPFL and Stanford when upsampling
LF images two times. This is mainly because this two subsets have
too many specific LF imaging scenes, such as reflective surfaces and
occlusions, for which multi-view information would helpful. It can
be seen that owing to the strong capability of deep network, EDSR
achieves competitive performance despite that it is not designed for
LF image. With the guidance of adjacent views, our proposed LFESCN
outperforms the others in terms of two qualitative indexes by learning
the epipolar shift compensation. Since the view images of real world
scenes contain the interference of noticeable artifacts and noises, the
original LF images in this dataset are relatively of low quality. Under
the circumstances, our method still shows its superiority. On the con-
trary, attributed to sub-pixel information learned from multiple views,
it demonstrates that our method could handle challenging scenarios
much better than state-of-the-art.

For visual comparison of real scene dataset, Fig. 8 shows the central
view of SR image reconstructed by compared methods at the upscale
factor 4. We choose three LF images from the subsets, respectively, in-
cluding Bikes from EFPL [63], Fruits and vegetables from Stanford [64]
and Library from DDFF [65]. In Fig. 8, we enlarge the area in the
red box with the ground truth at the left-down of whole image, where
the PSNR value evaluated on the central view is shown below. It can
be seen that the results of LFNet are corrupted by obvious artifacts,
although this method is especially trained on real scene images. EDSR
produces ambiguous even over-smoothed super-resolved results as the
redundant view information is not explored. By contrast, our results are
relatively clear and real in different kinds of real scene images, which
demonstrates that the proposed method could not only recover more
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high-frequency details but also deal with complex imaging scenes.
Table 5
Quantitative evaluation of EPIs on test dataset reconstructed by LF SR algorithms:
average SSIM for scale factor 4. Bold indicates the best result.

Method Synthetic dataset Real scene dataset

bicubic 0.8269 0.8602
RR [43] 0.8366 0.8630
GB [9] 0.8485 0.8705
LFNet [14] 0.8425 0.8685
resLF [16] 0.8547 0.8719
EDSR [48] 0.8501 0.8911
MPIN [19] 0.8592 0.8826
LFESCN 0.8681 0.8936

4.6. EPIs comparison

Since we super-resolve each sub-aperture image separately, it is
vital to verify whether our method could preserve the inherent ge-
ometric structure. For the sake of evaluating the epipolar property,
we transform the predictive LF images into EPIs horizontally and
vertically and calculate the average SSIM of different methods, which is
displayed in Table 5. According to the results, our method achieves the
best performance on both synthetic and real scene datasets. Thus, to
some extent, the proposed method could preserve much more epipolar
geometric structures in terms of EPIs.

To further show our advantages in preserving the inherent epipolar
property, we also visualize the EPI results in Figs. 2 and 8 along
the line in the picture. As depicted in the visualization results, the
reconstructed EPIs of RR and GB are blurry. Although the image stacks
are simultaneously super-resolved in LFNet, the oblique lines are still
distorted since the epipolar constraint from all directions is not fully
exploited in the super-resolution process. Due to the fact that EDSR is
not designed for LF SR tasks, it suffers from distortion in EPIs despite
the high PSNR value on a single image. Compared to other methods,
by considering the surrounding view images as epipolar constraint, our
LFESCN could recover more sharp lines in EPIs. In the meanwhile,
the dynamic deformable layer in the compensation module makes our
method sensitive to the light change so that the inherent geometric
structure is well preserved in our reconstructed LF images. The basic
idea of the proposed method is to map the sub-pixel shift from the
angular dimension to the spatial dimension along all epipolar directions
through alignment in the feature domain. Therefore, on the one hand,
using all surrounding views as priori information, it can be ensured
that the inherent epipolar property is largely preserved during the
super-resolution process. On the other hand, owing to the explicit
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Fig. 8. The ×4 super-resolved central view images and corresponding EPIs of three real scene images are shown and the corresponding PSNR values of central views are illustrated
below.
Table 6
Parameter numbers and testing time of several networks with leading LF SR
performance.

Method LFNet EDSR resLF MPIN LFESCN

Params (×106) 0.68 40.72 7.98 1.07 4.23
Time (s) 4.03 0.38 2.40 1.28 1.24

shift compensation, our method could make full use of the internal
correlations to recover as much high-frequency information as possible.

4.7. Model analysis

Table 6 shows the number of parameters and running time of several
networks with the leading LF SR performance. We test four methods on
the whole dataset to calculate the average testing time of a single LF
image on NVIDIA GTX 1080Ti for a fair comparison. As demonstrated
in Table 6, our method is slower than the EDSR method in which all
views can be processed in parallel. However, compared to resLF, due to
the shallow network, our method is more efficient than resLF. Although
our method has more parameters than the latest MPIN method, we can
achieve better performance with the same running time.
197
5. Conclusion

In this paper, we have proposed a general epipolar shift compen-
sation network for LF SR, called LFESCN. In our method, we employ
multiple views as epipolar constraints to explore the internal relation-
ships, which allow the entire light field with consistency across all
sub-aperture images. Then, the sub-pixel shifts are learned from all
epipolar directions through alignment by the compensation module,
which would provide more high-frequency details for reconstruction.
Especially, LFESCN is a general model for any LF images. The qual-
itative and quantitative results on publicly available datasets have
demonstrated the superiority of our method over the state-of-the-art
at different scale factors.
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