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a b s t r a c t

This paper focuses on improving the spatial resolution of the hyperspectral image (HSI) by taking
the prior information into consideration. In recent years, single HSI super-resolution methods based
on deep learning have achieved good performance. However, most of them only simply apply
general image super-resolution deep networks to hyperspectral data, thus ignoring some specific
characteristics of hyperspectral data itself. In order to make full use of spectral information of the
HSI, we transform the HSI SR problem from the image domain into the abundance domain by the
dilated projection correction network with an autoencoder, termed as aeDPCN. In particular, we first
encode the low-resolution HSI to abundance representation and preserve the spectral information in
the decoder network, which could largely reduce the computational complexity. Then, to enhance the
spatial resolution of the abundance embedding, we super-resolve the embedding in a coarse-to-fine
manner by the dilated projection correction network where the back-projection strategy is introduced
to further eliminate spectral distortion. Finally, the predictive images are derived by the same decoder,
which increases the stability of our method, even at a large upscaling factor. Extensive experiments on
real hyperspectral image scenes demonstrate the superiority of our method over the state-of-the-art,
in terms of accuracy and efficiency.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Hyperspectral imaging collects spectral information of the
ame scene over a large number of continuous and narrow spec-
ral bands, ranging from ultraviolet to infrared wavelength. Thus,
he hyperspectral image (HSI) acquires both spatial relationships
nd reflectance nature of different objects with a high spectral
esolution. As a 3D data cube, each pixel of HSI represents a
pectral curve of the related material, which can be utilized to
istinguish the objects in the image scene, especially the earth
bjects. Because of this property, HSI has proven to be useful
or many occasions, such as land surface classification (Liu, Gu,
hanussot, & Dalla Mura, 2017; Wu & Prasad, 2017), anomaly
etection (Du & Zhang, 2014; Xie et al., 2020), environmental
onitoring (Plaza, Du, Bioucas-Dias, Jia, & Kruse, 2011), and so
n. However, due to the inevitable trade-off between spatial
esolution, spectral resolution, and signal-to-noise ratio, HSI usu-
lly has a low spatial resolution, limiting the range of potential
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applications (Yokoya, Grohnfeldt, & Chanussot, 2017). For this
reason, it is essential to develop a software technique that can
improve the spatial resolution of HSI without losing detailed
spectral information (Liu, Wen, Fan, Loy, & Huang, 2018; Wen,
Kamilov, Liu, Mansour, & Boufounos, 2018). This technique is
known as super-resolution (SR), which is a hot topic in computer
vision.

SR is a classical method to reconstruct high-resolution (HR)
image through one or more corresponding low-resolution (LR)
images. It is a post-processing method to improve spatial resolu-
tion without modifying the hardware. Most existing SR methods
designed for HSI are fusion-based methods (Akhtar, Shafait, &
Mian, 2015; Dong et al., 2016; Qu, Qi, & Kwan, 2018; Simões,
Bioucas-Dias, Almeida, & Chanussot, 2014; Veganzones et al.,
2015; Wei, Bioucas-Dias, Dobigeon, & Tourneret, 2015), which
recover the HR HSI by fusing the LR HSI with corresponding
auxiliary images of the same scene. These additional observations
usually have high spatial resolution with a low spectral resolu-
tion, including the multi-spectral image, the panchromatic image,
and the RGB image. Nevertheless, due to the particularity of the
hyperspectral imaging scene, these auxiliary images captured at
the same scene as HSI are often scarce even unavailable. As
a result, the absence of auxiliary images hinders the practical
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pplication of the fusion-based SR methods. Another obstacle
o some fusion-based methods is the premise that the auxiliary
bservation has been fully registered with HSI, which is also a
hallenging task. Therefore, it is valuable to explore the HSI SR
ethod based on a single input. The single-image SR method
roduces HR HSI from a single LR HSI without any additional
nformation.

In the past decades, many single-image-based methods have
een proposed to solve the HSI SR problem (Jiang, Sun, Liu, &
a, 2020; Wang, Ma, & Jiang, 2021). Some traditional approaches

ypically use a prior (which is sophisticatedly designed by hand)
uch as self-similarity, sparsity, or low rank of the HSI to regular-
ze the super-resolution reconstruction process (He, Zhou, Wang,
ao and Han, 2016; Huang, Yu, & Sun, 2014). Recently, due to the
trong ability to extract image features, the convolutional neural
etwork (CNN) has been successfully applied to reconstruct HR
SI in an end-to-end manner. Although all of them are proven
o be effective in this task, there still exist some shortcomings.
pecifically, the former’s shallow heuristic models have limited
xpressive power. Thus, they usually fail to appropriately recover
he complex image details. Taking the whole data with hundreds
f spectral bands as the input, the CNN-based methods either
egard the HSI as ordinary 3D data cube, ignoring the spectral
haracteristics of the HSI, or have high computational complexity.
To address the above-mentioned challenges, we consider the

asic spectrum of the HSI as prior information to solve the HSI
R problem in the abundance domain, which is implemented
y the dilated projection correction network with autoencoder,
ermed as aeDPCN. In our method, we transform the HSI SR
problem into the abundance domain by autoencoder based on
matrix factorization. According to the hypothesis of the linear
spectral mixture model, nonnegative matrix factorization (NMF)
as a useful unmixing method can identify endmember spectra
and estimate the corresponding abundances of HSI. In particular,
describing the same imaging scene, LR and HR HSIs should have
the same endmember. Due to this observation, we transform the
nonnegative hyperspectral data through an autoencoder network
which plays the role of decomposition and reconstruction. Con-
cretely, we embed the nonnegative and sum-to-one constraints
into the encoder to generate the abundance representation while
the decoder preserves the basic spectral information. To improve
the spatial resolution, the dilated projection correction network
(DPCN) is adopted to super-resolve the abundance embedding
that is much smaller than the original HSI. In this network, we
progressively reconstruct the HR embedding and use the hybrid
dilated convolution to extract informative features with a large
reception field. Sharing the same decoder, the generated HR
representation is required to follow a similar pattern as the LR
representation. Therefore, we design the back-projection module
to constrain the generated abundance for correcting the spec-
tral distortion. Compared with other CNN-based methods, we
perform super-resolution in the abundance domain, which could
greatly reduce the computational complexity. Besides, the spec-
tral prior has been preserved in the decoder, which makes our
method more accurate for reconstruction without much spectral
loss, even at a large scale factor.

As shown in Fig. 1, spectral decomposition is also a gen-
eral procedure for fusion-based methods (Lanaras, Baltsavias, &
Schindler, 2015; Qu et al., 2018; Yokoya, Yairi, & Iwasaki, 2011). In
this procedure, through model-based methods or learning-based
methods, the endmember spectrum S and the HR abundance Ah
re extracted from the LR HSI and the HR auxiliary observation,
espectively. On the contrary, our proposed aeDPCN redefines the
R problem in the abundance domain. In particular, the abun-
ance representation is regarded as the embedding to improve
he spatial resolution. Due to the absence of auxiliary observa-
ions for single HSI SR, the dilated projection correction network
108
attempts to learn a mapping function between the LR abundance
Al and the corresponding HR one Ah, which has been rarely
studied in the HSI SR problem.

In summary, our major contribution is three-fold. First, we
solve the SR problem in the abundance domain, which is the
first attempt in the single HSI SR task. Specifically, we transform
the single HSI SR problem into the abundance domain and unify
the matrix transformation and SR in an end-to-end manner. In
this way, the computational overhead, the critical issue in HSI
SR problem, could be greatly reduced and spectral information
can be better preserved. Second, we deploy the hybrid dilated
convolution in limited layers to acquire deep spatial features for
super-resolving the abundance representation. As a result, our
aeDPCN is a light-weight model with comparable performance,
which is demonstrated in the extensive experiments. Last but
not least, when improving the spatial resolution, to ensure that
the HR and LR abundance representations have similar patterns,
a back-projection correction strategy is integrated to reduce the
spectral distortion.

2. Related work

2.1. Deep neural network for SR

With the expansion of image databases and the progress of
computational technology, learning-based methods have made
great achievements in high-level computer vision tasks, such as
image classification, objection detection, and scene segmenta-
tion. Similarly, to low-level problems such as super-resolution,
learning-based methods also have achieved significantly excel-
lent results in nature images mainly through the deep neural
network (DNN). Due to its powerful learning ability, DNN is
designed to learn a mapping function between LR and HR im-
age pairs in an end-to-end manner. Dong, Loy, He, and Tang
(2015) first applied three convolutional layers to resolve the SR
problem successfully, which has shown great superiority to the
traditional SR methods. Subsequently, through skip connection,
residual learning (He, Zhang, Ren and Sun, 2016) was introduced
in this task to ease the training process of the deep network,
such as very deep network for super-resolution (VDSR) (Kim,
Kwon Lee, & Mu Lee, 2016a), deeply recursive convolutional
network (DRCN) (Kim, Kwon Lee, & Mu Lee, 2016b), and deeply
recursive residual network (DRRN) (Tai, Yang and Liu, 2017).
Besides, enhanced deep super-resolution network (EDSR) (Lim,
Son, Kim, Nah, & Mu Lee, 2017) removed unnecessary parts in
the residual modules and won the NTIRE2017 Super-Resolution
Challenge. For maximum feature reuse, in Tai, Yang, Liu and Xu
(2017), Tong, Li, Liu, and Gao (2017) and Zhang, Tian, Kong, Zhong
and Fu (2018), the outputs of convolutional layers were densely
connected to batter propagate information. After that, researchers
have investigated deeper networks or more sophisticated struc-
tures to reconstruct HR images. For instance, the generative ad-
versarial network (GAN) (Goodfellow et al., 2014) was proposed
in Ledig et al. (2017) and Wang et al. (2018) for photo-realistic
SR, which can alleviate the blurring and over-smoothing artifacts
to some extend. To generate multi-scale predictions, a progres-
sive reconstruction was adopted by the Laplacian pyramid SR
network (LapSRN) (Lai, Huang, Ahuja, & Yang, 2017) in a coarse-
to-fine manner. Similarly, Haris, Shakhnarovich, and Ukita (2018)
exploited iterative up-and-down downsampling layers with an
error feedback mechanism to construct deep back-projection net-
works (DBPN), establishing new state-of-the-art results for large
scaling factors. From the innovation of classification task, residual
channel attention networks (RCAN) (Zhang et al., 2018) utilized
attention mechanism in a residual way and stacked up to 400
layers, which achieved the best performance.
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Fig. 1. Difference between the fusion methods based on spectral decomposition and our aeDPCN. (a) General procedure of fusion methods based on spectral
ecomposition. (b) The procedure of our proposed aeDPCN.
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Although the natural image SR problem has been extensively
tudied and these aforementioned methods have achieved good
esults on RGB images, most of them cannot be applied for HSI SR
irectly. On the one hand, in general, these methods are trained
o process three-channel or single-channel images. Since the HSI
ata have hundreds of channels, these CNN-based methods pre-
rained on RGB images should be extended in a band-by-band
anner to super-resolve single-band image. However, this way
ould cause spectral distortion because each pixel of the HSI data
eflects spectral information of the specific material. On the other
and, if the input and output dimensions of these models are
djusted to the corresponding HSI data dimension, we should
rain the network from scratch. In order to avoid over-fitting,
ost very deep networks need a lot of data to drive. There are not
nough hyperspectral data to meet this requirement. Therefore,
t is necessary to design lightweight methods specifically for HSI.

.2. CNN for HSI SR

Recently, several CNN-based methods have been proposed
or HSI SR. To alleviate spectral distortion, a spectral difference
onvolutional neural network (SECNN) was proposed with the
ombination of a spatial-error correction (SEC) model (Hu, Li, &
ie, 2017; Xie, Li, Hu, & Chen, 2018), which achieved both spatial
nformation enhancement and spectral information preservation.
imilarly, Li, Hu, Zhao, Xie, and Li (2017) combined a spatial
onstraint (SCT) strategy with SDCNN model to make the LR HSI
enerated by the reconstructed HSI spatially close to the input
R HSI. To further exploit spatial–spectral information, Hu, Zhao,
nd Li (2019) presented an intra-fusion operation based on a deep
nformation distillation network. Subsequently, Yuan, Zheng, and
u (2017) exploited transfer learning with collaborative non-
egative matrix factorization (CNMF) to enforce collaborations
etween the LR and HR HSIs. Sharing the same idea of matrix
actorization, deep feature matrix factorization (DFMF) (Xie, Jia,
i and Lei, 2019) blended feature matrix extracted by a DNN
ith NMF strategy for super-resolving real-scene HSI. In general,
he SR problem in these methods was solved in a multi-step
ptimization strategy. Firstly, due to the redundancy of hyper-
pectral bands, the band selection is conducted on the original
SI data. Then, in some way, the key bands would be super-
esolved by the CNN to improve their spatial resolution. Lastly,
he post-processing strategy utilizes the HR key bands to restore
he HR HSI and corrects its spectral information. Although these
ethods have achieved good results, they rely heavily on manual
 d

109
processing and consume a lot of time. Hence, some methods
implemented in an end-to-end manner for HSI SR have been
proposed. Mei et al. (2017) designed a three-dimensional full
CNN (3D-FCNN) method to exploit both the spatial context of
neighboring pixels and spectral correlation of neighboring bands.
Although 3D convolution could capture both spatial and spectral
correlation, the computational complexity is comparatively high,
especially at a large input. Due to spectral disorder caused by
normal 2D convolution, grouped deep recursive residual network
(GDDRN) (Li, Zhang, Dingl, Wei, & Zhang, 2018) embedded a
grouped recursive module into the global residual structure with
a joint loss to reduce both the numerical error and spectral
distortion. Similarly, separable-spectral and inception network
(SSIN) (Zheng et al., 2019) extracted features of each band image
independently by separable-spectral convolution and fused them
in a coarse-to-fine manner. Recently, a novel mixed convolutional
network (MCNet) (Li, Wang, & Li, 2020) is designed to extract
the potential features by 2D/3D convolution for mining spatial
features of hyperspectral image. However, all of these end-to-end
methods conduct on the original HSI data directly and take them
as ordinary data cube for resolution lifting, which neglect the
spectrum knowledge of HSI. Under the circumstances, they can-
not preserve the spectral information well. Therefore, according
to the transformation conducted by the autoencoder, we collect
the basic spectra in the decoder as prior information and use the
dilated back-projection correction network to learn the mapping
function between LR and HR abundance maps.

3. Problem formulation

Given the LR HSI, X ∈ Rh×w×L with L spectral bands, where h
and w denote the width and height of each band, the goal of the
single-image SR method for HSI is to estimate the corresponding
HR HSI, Ŷ ∈ RH×W×L with the enhancement of spatial resolution
at the upscale factor s, in which H = s× h, W = s× w. Hence, Ŷ
is expected to as close to the ground-truth HR HSI Y ∈ RH×W×L

s possible.
In general, the existing CNN-based methods learn the mapping

unction between LR HSI and HR HSI, which can be defined as:

ˆ = M(X ; θ ), (1)

where M is the SR model and θ refers to the parameter of M.
n this case, these methods handle the original input as ordinary

ata cube and ignore the prior information of HSI, which would
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Fig. 2. The whole diagram of our proposed aeDPCN. DPCN represents the dilated back-projection correction network.
ause the loss of spectral information while improving spatial
esolution.

To address this issue, we take the endmember spectrum as
rior information and redefine the SR problem in the abundance
omain. To facilitate the matrix factorization, we unfold the 3D

data cube into the 2D matrix, i.e. each row of the 2D map denotes
the spectral reflectance of a given pixel. The LR HSI data can
be rewritten as X ∈ Rhw×L. Due to its physical effectiveness
and mathematical simplicity, a linear spectral mixture model is
widely used for unmixing HSI. Thus, we suppose that each row
of the unfolded HSI data is a linear combination of c endmember
spectra and the LR nonnegative matrix can be factorized into:

X = AlS, (2)

where Al ∈ Rhw×c is the abundance matrix with each row
vector denoting the abundance fractions of all endmembers at
that pixel, S ∈ Rc×L represents the endmember spectrum and
c is the number of endmembers with c ≪ L. Since HR and LR
observations describe the same scene, the underlying materials
(i.e., endmembers) should be the same. Therefore, if we improve
the spatial resolution of the abundance matrix, sharing the same
endmember spectrum, the corresponding HR HSI Ŷ ∈ RHW×L

could be reconstructed by:

Ŷ = AhS, (3)

where Ah ∈ RHW×c is the predicted abundance map of HR HSI.
To this end, our goal is to learn the mapping function between

LR and HR abundance matrices. Since the abundance coefficients
indicate how the spectral bases are mixed at specific spatial loca-
tions, they still preserve the spatial structure of the original HSI.
In order to capture its spatial relationship, we fold the abundance
matrices as Al ∈ Rh×w×c and Ah ∈ RH×W×c . Thus, the mapping
function is:

Ah = M(Al; θ ). (4)

In this way, we transform the SR problem into the abundance
domain, which reduces the complexity of the model. By taking
advantage of the endmember spectrum as the prior information,
we would preserve as many spectral details as possible while
improving the spatial resolution.
110
4. Proposed method

Fig. 2 depicts the diagram of our proposed aeDPCN. The 3D LR
HSI is first unfolded into 2D matrices for spectral decomposition,
which is implemented by the autoencoder network. In order
to transform the SR problem into the abundance domain, the
encoder tries to generate the abundance coefficients, satisfying
the nonnegative and sum-to-one constraints. Thereby, we can
reduce the dimensionality of the data from Rhw×L to Rhw×c where
c ≪ L. In addition, inspired by the basic idea of NMF, the
decoder network is utilized to represent the endmember matrix
for reconstructing HSI, while preserving the spectral information
contained in the HSI. Then we consider the abundance repre-
sentation of LR HSI as an embedding of the HSI. As the spatial
structure of the HSI is still preserved in the abundance domain,
the HSI embedding is folded and fed into the dilated projection
correction network to improve the spatial resolution. The super-
resolved embedding gives an estimation of the HR abundance
coefficient. Since the HR HSI and LR HSI are sampled from the
same scene, the same endmember matrix is multiplied on the
abundance representation to produce the HR HSI by sharing the
same decoder.

4.1. Autoencoder-based spectral decomposition

Widely used for dimension reduction and representation
learning, the autoencoder-based network attempts to approxi-
mate an identity map, and accordingly, the output is close to
the input. This architecture usually consists of an encoder to map
the input data to low-dimensional representations and a decoder
for reconstitution, which is suitable to implement the process
of Eq. (2) and widely used for the unmixing problem (Palsson,
Sigurdsson, Sveinsson, & Ulfarsson, 2018; Qu & Qi, 2018; Su et al.,
2019; Xie, Lei, Liu, Li and Jia, 2019). In general, the abundance and
the endmember can be generated by this structure or represented
by its parameters.

For the sake of the SR problem in Eq. (4), we encode the
original input into low-dimensional abundance representation via

A = f (X; θ ), (5)
l e e
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able 1
he detailed structure of the autoencoder network.

Layers Activation function Unit

Encoder

Input layer LeakyReLU L
Hidden layer LeakyReLU 8c
Hidden layer LeakyReLU 4c
Hidden layer LeakyReLU 2c
Hidden layer ReLU + Normalization c

Decoder Output layer – L

where fe denotes the operation of the encoder with the parameter
e. The encoder network consists of several fully-connected lay-
rs. It is essential that the activation function should be nonlinear,
therwise the encoder would simply perform the dimensional
eduction.

Based on the linear spectral mixture model, the abundances
epresent relative fractions of the spectral bases. Therefore, they
re required to satisfy the non-negative constraint and sum-to-
ne constraint, that are

ij ≥ 0, ∀i, j, (6)
c∑

j=1

aij = 1. (7)

For the non-negative constraint, some works have introduced a
threshold (Qu & Qi, 2018) or a nonnegative autoencoder (Qu et al.,
2018; Su et al., 2019) to enforce the vector to be nonnegative.
Besides, the regularization (Qu et al., 2018; Su et al., 2019), or
normalization (Palsson et al., 2018; Su et al., 2019) operators have
been employed to guarantee the sum-to-one constraint. In order
to avoid the complex design of the network, we use the ReLU
activation function at the end of the encoder to enforce the output
of the encoder to be nonnegative and this nonnegative vector is
normalized by the sum of its entries, namely

aij =
aij∑c
j=1 aij

. (8)

After acquiring the low-dimensional embedding, the decoder
attempts to reconstruct the input spectrum as faithfully as possi-
ble by

X̂ = fd(Al, θd), (9)

in which fd denotes the operation of the decoder with the param-
eter θd. Compared to Eq. (2), it is evident that the decoder has to
be a linear transformation fd : Rhw×c

→ Rhw×L. Consequently,
he weight of the decoder is expected as the endmember matrix
carrying spectral information. Thus we have

= θd. (10)

o this end, taking the abundance matrix A as input, the de-
oder network could reconstruct the HSI data, which simulates
he Eqs. (2) and (3). The detailed structure of the autoencoder
etwork is reported in Table 1.
Through the autoencoder-based network, we transform the

ingle HSI SR problem into the abundance domain and preserve
he spectral prior to HR reconstruction. Since both HR and LR
SIs capture the same imaging scene, it is reasonable to share
he same decoder.

.2. Dilated projection correction network for SR

The objective of this network is to map the LR abundance
epresentation into HR space. Since the spatial relationship of
he original data is still preserved in the abundance matrix, we
111
fold it into three-dimensional data to facilitate feature extraction
by convolutional layers. As shown in Fig. 3 that depicts the SR
network at the scale factor 4, our model has two basic parts:
the dilated feature reconstruction module to increase spatial res-
olution and the back-projection correction module for spectral
correction.

4.2.1. Dilated feature reconstruction
Inspired by Lai et al. (2017), we super-resolve the LR embed-

ding in a coarse-to-fine manner. Specifically, the HR abundance
is progressively predicted at log2 s levels where s is the scale
actor. At the kth level, for the dilated feature reconstruction
odule in Fig. 3(b), we first extract the deep features by stacking
onvolutional layers simply. Given Ak−1 as the input at the kth
evel, we have

k = H(· · · (H(Ak−1))), (11)

n which Fk represents deep features in LR space at this level,
nd H(·) denotes the convolution operation followed by the ReLU
ctivation function. In HSI, the abundance of material in a pixel is
losely related to that of neighboring pixels (Irmak, Akar, & Yuk-
el, 2018). As the SR network processes the abundance coefficient
nstead of the pixel value, the large scale dependency should be
aken into consideration. Therefore, to obtain a larger receptive
ield in limited layers, we exploit dilated convolutions to acquire
ore informative features. The dilated convolution is known for

ts expansion capacity of the receptive field while keeping the
erit of the traditional convolution. Specifically, the 2D dilated
onvolution is implemented by inserting ‘holes’ (zeros) in the
onvolutional kernel without adding parameters. For a convolu-
ion kernel with size 3 × 3, the size of the resulting dilated filter is
2d+1)×(2d+1) with the dilation rate d. In standard convolution,

= 1. When d > 1, the dilated convolution would have a
arger receptive field with the same parameters. However, using
he same dilation rate for all layers may lead to gridding, losing
large portion of information. To avoid such deterioration, the
ybrid dilated convolution (Wang et al., 2018) is adopted to cover
square region without any holes or missing edges. Practically,
even layers are stacked to extract deep features, which follows a
awtooth wave-like repeat. Hence, the equivalent receptive field
f each layer is 3, 5, 7, 9, 7, 5, and 3, respectively. Consequently,
t can be easily obtained that the receptive field of the layers
s 33 × 33. If the traditional 3 × 3 convolution layer is used,
the network will either have a receptive field of size 15 × 15
with the same network depth (i.e., 7) or have a depth of 16 with
the same receptive field (i.e., 33 × 33). In this way, our model
could make a trade-off between the size of the receptive field
and network depth while fully exploiting the spatial information
among abundance maps. For the sake of improving the spatial
resolution, according to the upscale level, an upsampling module
with scale 2 is used here to map the deep representations into
HR space. Thus, the upscaled residual is given by

Rk = U(Fk), (12)

where U(·) corresponds to the upsampling operation with the
basic factor 2. We leverage the PixelShuffle (Shi et al., 2016) oper-
ator followed by a convolutional layer to conduct the upsampling
procedure. The intermediate abundance map Ak is reconstructed
in a residual way, which is

Ak = Ak−1 ↑ +Rk, (13)

where Ak−1 ↑ refers to the bicubic upscale version of the input.
The output of this module can be regarded as the intermediate re-
sult with the upscale factor 2 and fed to the next level for further
reconstruction. Different from Lai et al. (2017), our model does
not constrain the intermediate result in a supervised manner.
Hence, this progressive structure attempts to ease the learning
process, especially at a large scale factor.
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Fig. 3. The whole structure of the dilated projection correction network at the scale factor 4.
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.2.2. Back-projection correction
In most cases, the SR methods often deploy the upsampling

odule as the last part of the end-to-end networks. On the one
and, we transform the SR problem into the abundance domain
ut the generated abundance representation is not directly super-
ised. On the other hand, the decoder preserving the endmember
pectrum reconstructs both LR and HR HSIs. Therefore, the HR
bundance map should be enforced to have a similar spectral
attern as the LR one. In this case, we design the back-projection
orrection module to constrain the abundance representation
mplicitly, which is inspired by the classical method of iterative
ack-projection (Irani & Peleg, 1991). In this correction module,
he difference between the downsampled rough abundance and
he original LR one is back-projected into HR space to correct the
istortion in a residual way. Meanwhile, we learn the linear com-
ination of all fractions at each position to exploit the spectrum
orrelation among neighboring abundance values. Thus, the LR
rror would guide the distortion correction from the spectrum
spect. With the learnable correction strategy, the generated HR
bundance representation could be adjusted to keep a similar
attern to the LR counterpart, which could reduce the distortion
aused by the same spectrum reconstruction.
The detailed structure of the back-projection correction mod-

le is displayed in Fig. 3(c). Taking the rough HR representa-
ion Ãh as input, this module first projects the super-resolved
bundance into LR space, that is

= H(D(Ãh)), (14)

here S refers to the downsampled counterpart of the rough
bundance in HR space, D corresponds to the downsampling op-

eration and H refers to one convolutional layer with ReLU. In this
paper, we employ the reverse operation of PixelShuffle followed
by a convolutional layer to conduct the downsampling procedure.
To correct the distortion, the difference between the observed
LR map S and the original Al is obtained by the element-wise
ubtract as follows:

l = Al − S. (15)

deally, the difference between the projected LR map S and the
original Al is expected to be as small as possible. In this case, the
downsamlped version of the rough abundance could be equal to
the LR abundance. Then, we map the difference to the HR space
to acquire the residual for back correction:
eh = U(H(el)), (16) t
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where U corresponds to the upsampling operation and H refers
o one convolution layer with ReLU. Finally, the rough prediction
ould be corrected by

h = Ãh + eh. (17)

hrough the back-projection correction strategy, the LR and HR
mbeddings could have similar patterns for predicting pixel val-
es by the same endmember spectrum. Similarly, we apply the
eLU function and normalization on the generated abundance in
R space to satisfy the nonnegative and sum-to-one constraints.

.3. Loss function

As the HSI data have both spatial and spectral characters, we
mploy a joint function to constrain the predictive image similar
o the ground truth, which is defined as the reconstruction loss
erm:

rec = Lspatial + λLspectral, (18)

where λ is a parameter that balances the trade-off between
spatial loss and spectral difference. Since the l1 loss has been
proved to be more effective than the l2 loss (Lim et al., 2017; Zhao,
Gallo, Frosio, & Kautz, 2016), the spatial loss is constructed by l1
norm, which is defined as follow:

Lspatial =
1
N

N∑
n=1

∥In
− În

∥1, (19)

where În and In are the reconstructed HSI and ground-truth HSI,
respectively, and N denotes the number of images in one training
batch.

We utilize a measurement (Li et al., 2018) based on the spec-
tral angle mapper (SAM) (Kruse et al., 1993) criterion to assess
the spectral similarity, that is:

Lspectral =
1
π

1
N

N∑
n=1

arccos

(
In

· În

∥In∥2∥În∥2

)
, (20)

here · is the tensor product and ∥ · ∥2 is the tensor norm. By
onstraining both two aspects, we can considerably reduce both
he numerical error and spectral distortion in the meanwhile.
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Algorithm 1: Training procedure of aeDPCN
Input: Low-resolution HSI X
Output: Super-resolution result HSI Ŷ

1 For k1 epochs do
2 Evaluate loss Eqs. (21);
3 Update parameters of auto-encoder by AdamOptimizer:

∇(L1);
4 end
5 Freeze the parameters of auto-encoder and use it to guide the

training of DPCN
6 For k2 epochs do
7 Evaluate loss Eqs. (22);
8 Update parameters of DPCN by AdamOptimizer: ∇(L2);
9 end

10 For k3 epochs do
11 Evaluate loss Eqs. (23);
12 Update parameters of aeDPCN by AdamOptimizer: ∇(L3);
13 end
14 Return Ŷ = MaeDPCN (X);

4.4. Training procedure

Since the proposed architecture is made up of two parts
ith different functions, we optimize the network with back-
ropagation following the procedure described below. The whole
rocedure is summarized in Algorithm 1.
Step 1: We first update the autoencoder network to decom-

pose and reconstruct the HSI data. Accordingly, the training target
of this step is to minimize the following objective:

L1 = Lrec(Î, I), (21)

n which Î and I are the ground truth HSI and reconstructed HSI
espectively. In this step, the autoencoder network is ideally ex-
ected to reconstruct the original input as completely as possible.
ince the autoencoder network is independent of the SR network,
e use the training data at all scales in both LR and HR space
o train this autoencoder just once. With this data augmentation
trategy, the autoencoder is equipped with scale invariance.
Step 2: The estimated weights of the autoencoder network are

ixed. Sharing the same decoder, we update the parameters of the
R network to generate both abundance representation and HR
rediction. Thus, in this step, we expect that the generated abun-
ance representation not only preserves the spectral information
ut also has a high spatial resolution to reconstruct satisfied HR
SI. Accordingly, the loss function of this step is:

2 = Lrec(Ŷ,Y). (22)

Step 3: We combine the objective functions of the above
wo steps to jointly fine-tune the whole network so that the
wo networks can promote each other to produce better results.
onsequently, the objective function of this step is composed by:

3 = Lrec(X̂ ,X ) + Lrec(Ŷ,Y). (23)

.5. Implementation details

According to the datasets, both the input and output nodes of
he proposed network are the same number of spectral bands in
SI data, denoted as L. We set the filter size of all convolutional
ayers to 3 × 3 except for that in the back-projection correction
module, where the kernel size is set to 1 × 1. To ensure that the
ize of the feature map is not changed, the zero-padding strategy
s applied for these convolutional layers with kernel size 3 × 3.
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For the dilated reconstruction module, the convolutional layers
for feature extraction have 64 filters, except for the last layer,
i.e., the output channel of this layer is identical to the number
of endmember spectrum c for residual learning. For the loss
function, we set λ = 0.1. For the training phase, we empirically
choose a mini-batch size of 16, and use Adam optimizer with
weight decay of 1e−4. The initial learning rate is set as 0.0001 and
is decayed by 10 times after 2000 epochs while the total epoch
is 3000. Our model is implemented by PyTorch on NVIDIA GTX
1080Ti.

4.6. Image quality metrics

For quantitative comparison, we use four quality measures to
evaluate the prediction HR HSI Ŷ with its corresponding ground
truth image Y , including peak signal-to-noise ratio (PSNR), er-
reur relative globale adimensionnelle de synthèse (ERGAS) (Zeng,
Huang, Liu, Zhang, & Zou, 2010), spectral angle mapper (SAM)
(Kruse et al., 1993), and structural similarity (SSIM) (Wang, Bovik,
Sheikh, Simoncelli, et al., 2004).

The widely used PSNR index is the mean ratio between the
maximum power of the image and the power of the residual
errors of all the spectral bands. For the ith spectral band, the PSNR
is calculated by:

PSNR(Yi, Ŷi) = 10 · log10

(
max(Yi)2

mean∥Yi − Ŷi∥
2
2

)
. (24)

A higher PSNR value indicates a better image quality of the
reconstructed HSI.

ERGAS measures the band-wise normalized root of mean
square error (RMSE) between the reference HSI Y and the re-
constructed HSI Ŷ , with the best value at 0. It is defined as:

ERGAS(Y, Ŷ) =
100
s

√1
L

L∑
i=1

mean∥Yi − Ŷi∥
2
2

mean(Yi)2
, (25)

where s is the scale factor between the LR HSI and HR HSI, and L
is the number of spectral bands in HSI data.

SAM is commonly used to quantify the spectral information
preservation at each pixel. More precisely, this index calculates
the angle between two vectors of the estimated and reference
spectra to represent spectral similarity. The SAM values near zero
indicate high spectral similarity with no spectral distortion. The
SAM is defined as:

SAM(Y, Ŷ) = arccos

(
Y · Ŷ

∥Y∥2∥Ŷ∥2

)
. (26)

Another well-known index is the SSIM. For the ith spectral
and, it is defined as:

SIM(Yi, Ŷi) =
(2µYiµŶi

+ c1)(2σYi,Ŷi
+ c2)

(µ2
Yi

+ µ2
Ŷi

+ c1)(σ 2
Yi

+ σ 2
Ŷi

+ c2)
, (27)

here µYi and µŶi
are the means of Yi and Ŷi, respectively, σYi

nd σŶi
are the variances of Yi and Ŷi, respectively, σYi,Ŷi

is the
ovariance of Yi and Ŷi, c1 and c2 are constants set as 0.0001 and
0.0009, respectively. The best value of SSIM is 1. The mean SSIM
is estimated by averaging the SSIM values of all bands in HSI data.

5. Experiments and results

5.1. Datesets and experimental setup

The proposed method is evaluated on the two benchmark
datasets: Chikusei (Yokoya & Iwasaki, 2016) and Pavia datasets.



X. Wang, J. Ma, J. Jiang et al. Neural Networks 146 (2022) 107–119

T
T
b
a

s
t
n
T
s
s
t
b

t
d
P
d
i
p
p
w
t
6
t

A
a
P
m
e
p

c
a
w
s
b
o
w
a
c
i
d
i
m

a
c
e
t
r
p
p
t
c
p
s

5

f
c
i
s
b
I
f
r

able 2
he trade-off between performance and parameter on the number of endmem-
er spectra in the proposed aeDPCN evaluated on the testing set of Pavia dataset
t the scale factor 4.
Number PSNR SAM Params × 106 FLOPs × 109

10 27.75 6.25 0.07 0.71
20 28.01 5.90 0.26 2.73
30 28.44 5.44 0.58 5.99
40 28.50 5.40 1.03 10.96

The Chikusei dataset is an airborne hyperspectral dataset taken by
the Headwall Hyperspec-VNIR-C imaging sensor over agricultural
and urban areas in Chikusei, Ibaraki, Japan. The hyperspectral
scene consists of 2517 × 2335 pixels with 128 bands in the
pectral range from 363 nm to 1, 018 nm. We first extract the
op region of this image to form the testing data, which has four
on-overlap hyperspectral images with 400 × 400 × 128 pixels.
he remaining region of this image are clipped into 400 × 400
ub-images with the overlap of 200 pixels. Ten percent of total
ub-images are randomly divided as validation datasets. In order
o enrich the training dataset, the rest sub-images are augmented
y randomly rotating and flipping with a probability of 0.5.
The Pavia dataset is a real hyperspectral scene acquired by

he ROSIS sensor during a flight campaign over Pavia. Since we
iscard the last band of the Pavia University for unity, both
avia Centre and Pavia University are employed to extend the
ataset with 102 spectral bands. The size of Pavia Centre image
s 1, 096 × 1, 096 pixels with missing information in the center
art of the image so we discard the missing part and use the left
art which has 1, 096 × 220 valid pixels for validation and test
ithout overlapping. The rest part of subimages is extracted for
raining in the experiments. The Pavia University scene contains
10 × 340 pixels and we select the sub-region with the richest
exture details as the test image, 220 × 220 pixels as shown at
the first row of Fig. 4. All sub-images for training are cropped into
220 × 220 with the overlap of 110 pixels. To extend the training
dataset, the training data is also augmented by the same way.

Both scenes are regarded as ground-truth of HR HSI and nor-
malized into between 0 and 1. In order to simulate LR HSI, these
HR images are downsampled by bicubic interpolation to obtain
the corresponding counterparts. There is no additive noise during
the degradation process.

Six strategies are chosen as the baseline for comparison: bicu-
bic, exSRCNN, GDRRN (Li et al., 2018), FCNN (Mei et al., 2017),
SSIN (Zheng et al., 2019) and MCNet (Li et al., 2020). The exSRCNN
denotes the extended SRCNN since the original SRCNN (Dong
et al., 2015) is designed for gray image SR, we adjust the first and
last layers adapted to the training data. With the available source
codes in public, the FCNN, GDRRN and MCNet algorithms are
trained by their best settings. We reimplement the SSIN method
according to the original paper as best as possible. For compar-
ison, we use the average results of four quantitative indexes to
evaluate the proposed method at the upscaling factors 2, 4 and 8.

5.2. Ablation studies

Number of endmember spectra. The most important pa-
rameter of the whole architecture is the number of endmember
spectra c . As basis spectra carry the spectral information of the
material, this number determines the representation capacity of
the proposed structure and the computational complexity. We
train the proposed model on the Pavia dataset with different
settings, e.g., c = 10, 20, 30, 40 at the upscale factor 4, and show
the trade-off between performance and parameter in Table 2.

According to the results, increasing the spectrum number, the
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Table 3
Ablation study. Quantitative comparisons among some variants of the proposed
aeDPCN method over the testing set of Chikusei dataset at the scale factor 4.
Models PSNR↑ ERGAS↓ SAM↓ SSIM↑

Our-w/o DC 38.86 5.36 2.96 0.90
Our-w/o BPC 39.04 5.47 3.16 0.91
Our-w/o FT 38.92 5.44 3.02 0.90
aeDPCN 39.12 5.22 2.89 0.92

performance of the network has improved gradually with the
increased computational complexity. When we increase the num-
ber of endmember spectra from 30 to 40, there is only a little
improvement in both spatial and spectral aspects. Therefore, we
choose c = 30 for Pavia dataset to strike a balance between
performance and computational complexity.

Dilated convolution. In order to acquire more information in
limited layers, we deploy dilated convolutions for feature extrac-
tion. To demonstrate the effect of the dilated convolution, we
replace dilated convolutions by standard convolutions with the
kernel size of 3 × 3 and obtain the variant of our method, i.e.,
Our-w/o DC. When the depth in the dilated feature reconstruction
module is 7, the variant has a receptive field of size 15 × 15.
s reported in Table 3, our method with dilated convolutions
chieves better performance on all indices especially for the
SNR value (+0.26 dB). Owing to the dilated convolution, our
ethod could acquire deep spatial information in limited lay-
rs, which contributes to a light-weight model with comparable
erformance.
Back-projection correction. In view of sharing the same de-

oder that preserves the spectral information, the super-resolved
bundance should have a similar pattern as the LR one. Thereby,
e design the back-projection correction module to correct the
pectral distortion. To verify the effectiveness of the
ack-projection correction module, we compare the performance
f the method with and without this module. As shown in Table 3,
ith the back-project correction mechanism, our method has
chieved a significant performance gain on the spectral aspect
ompared to Our-w/o BPC. Since we use the 1 × 1 convolution
n this block, the back-projection strategy focuses on the spectral
imension. Although it has a relatively small improvement on the
ndex of spatial reconstruction error (i.e., PSNR), this correction
odule could significantly reduce the spectral distortion.
Fine-tuning. Since the proposed method consists of two parts:

utoencoder-based spectral decomposition, dilated projection
orrection network for super-resolution, which are unified in an
nd-to-end manner, we optimize the whole network by fine-
uning the pretrained two parts. To some extent, this strategy
educes the difficulty of network training. The two parts could
romote each other to achieve better performance. We train the
roposed method from scratch with the objective of step 3 and
abulate the results in Table 3, corresponding to Our-w/o FT. It
an be seen that without fine-tuning, the performance of the
roposed method suffers from deterioration for both spatial and
pectral evaluation.

.3. Qualitative results

To demonstrate the effectiveness of our proposed SR method
or HSI, we first exhibit the reconstruction results of different
ompared methods with ground truth image in the last column
n Figs. 4 and 5. As for the Chikusei dataset, we choose two
ub-images from the test set, representing agricultural and ur-
an areas and the 84th band of them are visualized in Fig. 5.
n Fig. 4, the first row shows the 82th bands of a sub-region
rom Pavia University scene and we select 48th band of a sub-
egion from Pavia Centre scene in the second row of Fig. 4. For
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Fig. 4. Visual comparison for ×4 HSI SR on two representative sub-images from Chikusei dataset. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)
Fig. 5. Spatial absolute difference for ×4 HSI SR on two representative sub-images from Chikusei dataset. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
Fig. 6. Visual comparison for ×4 HSI SR on the test images from Pavia University and Pavia Centre.
etter visualization, we highlight a small area in the red box. We
an observe that our method could recover sharper and clearer
dges or outlines which are blurry in other reconstruction results.
pecifically, our method behaves well in restoring the building
oundaries in the scene. Due to the fact that our method predicts
he individual pixel value from the abundance domain by multi-
lying the spectral representations, they might be more accurate
n composing sharp scene information. For the sake of comparing
he reconstruction results over all bands, in Figs. 6 and 7, we
isplay the mean absolute difference over all bands between
econstructed result and the ground truth for two datasets. Since
he original scenes are not very clear, we only display a small area
f each scene. As illustrated in Figs. 6 and 7, our results recover
R images with less reconstruction error.

.4. Quantitative results

Tables 4 and 5 demonstrate the experimental results of six
ethods evaluated on the Chikusei and Pavia test sets, including
SNR, ERGAS, SAM, and SSIM. It can be noticed that the exS-
CNN method suffers from spectral distortion in both datasets,
ore severe than the traditional interpolation method. Since the
xSRCNN is not designed for the HSI SR, it neglects the spectral
115
information, which is the key characteristic in HSI data. Even
if the PSNR value of exSRCNN is higher than that of the bicu-
bic, exSRCNN does not achieve competitive performance on the
spectral information. As the SSIN method reconstructs the HR
data in a coarse-to-fine manner, it can acquire good PSNR scores.
However, as indicated in the table, when the upsampling scale
is large (e.g., 8), the performance of SSIN evaluated by SAM is
not promising. Although the mixed convolutions in MCNet are
designed to mine the spatial information, the spectral information
is not well preserved.

Based on the experimental results, equipped with the di-
lated convolution and back-projection correction, the proposed
aeDPCN outperforms the others in terms of all quantitative in-
dexes, and it is quite stable at different upscaling factors for
both datasets. Specifically, since the original Pavia scenes do not
have high quality, the improvement on test set is relatively small.
On the contrary, this demonstrates that our method can handle
challenging scenarios much better than other methods. In addi-
tion, at the upscaling factor 8, our method has much improved
performance on the SAM value, which shows effectiveness in
preserving the spectral information with the improvement of
spatial resolution. This is mainly because we enhance the spatial
resolution in the abundance domain with dilated convolutions
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Fig. 7. Spatial absolute difference for ×4 HSI SR on the test images from Pavia University and Pavia Centre.
Fig. 8. Absolute difference along spectral dimension of the ×4 HSI SR on two representative sub-images from Chikusei testset.
Fig. 9. Absolute difference along spectral dimension of the ×4 HSI SR on the test images from Pavia University and Pavia Centre.
able 4
uantitative evaluation on Chikusei dataset of state-of-the-art HSI SR algorithms:
verage PSNR/ERGAS/SAM/SSIM for scale factors 2, 4 and 8. bold indicates the
est result.
Scale Index bicubic exSRCNN GDRRN FCNN SSIN MCNet aeDPCN

×2

PSNR↑ 42.35 43.62 43.01 45.08 44.46 45.22 45.51
ERGAS↓ 7.64 6.43 7.02 5.94 6.70 5.88 5.64
SAM↓ 2.37 2.44 2.07 2.19 2.32 2.20 1.87
SSIM↑ 0.96 0.97 0.97 0.97 0.97 0.98 0.98

×4

PSNR↑ 37.35 37.51 38.07 38.65 37.92 38.59 39.12
ERGAS↓ 6.59 6.85 6.10 5.69 6.42 5.94 5.22
SAM↓ 3.93 4.05 3.54 3.62 3.86 3.35 2.89
SSIM↑ 0.88 0.90 0.90 0.91 0.90 0.90 0.92

×8

PSNR↑ 34.45 34.55 34.42 35.06 34.62 34.88 35.49
ERGAS↓ 4.54 4.54 4.57 4.25 4.32 4.37 4.04
SAM↓ 5.61 5.79 5.34 5.23 5.82 5.46 4.98
SSIM↑ 0.82 0.83 0.82 0.83 0.82 0.82 0.84

and the predictive abundance representations are back-projected
to the LR space to correct the spectral difference. In the mean-
while, the spectrum information is preserved in the decoder as
prior information, which is also remained constant at any factor
116
Table 5
Quantitative evaluation on Pavia dataset of state-of-the-art HSI SR algorithms:
average PSNR/ERGAS/SAM/SSIM for scale factors 2, 4 and 8. bold indicates the
best result.
Scale Index bicubic exSRCNN GDRRN FCNN SSIN MCNet aeDPCN

×2

PSNR↑ 30.78 31.27 32.47 33.61 33.51 33.84 34.02
ERGAS↓ 9.34 9.24 8.12 6.83 6.92 6.75 6.56
SAM↓ 4.58 7.05 4.23 3.92 4.31 4.12 3.53
SSIM↑ 0.87 0.91 0.91 0.93 0.93 0.93 0.95

×4

PSNR↑ 26.71 27.43 27.74 27.89 27.74 27.96 28.44
ERGAS↓ 7.35 6.82 6.55 6.44 6.56 6.46 6.08
SAM↓ 6.37 6.86 5.84 5.85 5.90 5.62 5.44
SSIM↑ 0.66 0.73 0.73 0.74 0.73 0.75 0.78

×8

PSNR↑ 24.11 24.32 24.40 24.62 24.61 24.70 24.90
ERGAS↓ 4.93 4.82 4.71 4.65 4.65 4.56 4.34
SAM↓ 8.14 8.84 7.92 7.77 8.37 7.83 7.32
SSIM↑ 0.46 0.50 0.50 0.51 0.50 0.52 0.53

for both LR and HR. In this way, our performance is more stable
than all algorithms even at a large scale factor.

To further show our advantages in preserving the spectral
information, we display the difference of the compared methods
along the spectral dimension in Figs. 8 and 9 for the Chikusei



X. Wang, J. Ma, J. Jiang et al. Neural Networks 146 (2022) 107–119

T
P
f

t
t

b
d
s
m
m
I
o
t
p
o
H
s
s

w
e
o
i
i
a
p
t
A
g
a
i
a
a
b
w
H
a
u
(
c
b
n
a

l
p
d
f
l
m
b
b

7

c
P
a
H
r
t
d
M
e
L
p
s
r

able 6
arameter and complexity comparison. The results are evaluated at the scale
actor 4.
Methods exSRCNN GDRRN FCNN SSIN MCNet aeDPCN

Params × 106 0.66 0.52 0.03 72.08 2.17 0.58
FLOPs × 109 24.39 106.50 148.16 166.07 2075.71 5.99

and Pavia datasets, respectively, which is collected by averaging
the whole bands of the selected images. Instead of displaying the
spectral reflectance at several positions, these diagrams would be
more representative. In Fig. 8, we show the absolute difference
of two representative sub-images from Chikusei. For the Pavia
dataset, the left one of Fig. 9 is the mean absolute difference
of a test image from Pavia University scene while the right one
is from Pavia Centre. In these figures, in view of the spectral
aspect, our method, aeDPCN (red curve), has the lowest error for
all bands. The basic idea of the proposed method is to extract
spectral information by autoencoder and improve the spatial
resolution with dilated convolutions and back-projection strategy
in the abundance domain. Therefore, on the one hand, through
the constant decoder carrying the spectral representation as prior
information, it can be ensured that spectral properties are largely
preserved during the SR process. On the other hand, owing to
the back-projection correction, our method can avoid spectral
distortion well for reconstruction.

5.5. Parameter and complexity

We use the original codes of compared methods to calculate
he parameter and computational complexity. Table 6 concludes
he results that are evaluated on the input size of 48 × 48 at
scale 4. We can see that at the same level of parameters, our
method has the smallest computational overhead, referring to the
FLOPs. Even if FCNN has fewer parameters, the 3D convolution
is more computationally intensive, which is the same case in
MCNet. Due to the autoencoder-based the spectral decomposi-
tion, we transform the SR problem into the abundance domain by
several fully-connected layers. Meanwhile, the dimension of the
abundance representation is much smaller than that of original
HSI which other methods have taken as input. Consequently, our
method could significantly reduce the computational complexity.

5.6. Real image super-resolution

We also conduct SR experiments on real-world hyperspectral
images. The performance is evaluated on Washington DC Mall
data,1 which is a 191-band airborne multispectral scanner dataset
with a size of 1, 208×307. We first crop the center region of the
image to obtain a subimage with 1, 200×300×191 pixels, which
are further divided into training and test data. Specifically, the left
bottom region (200 × 200 × 191) is extracted as the testing data
and we extract overlapping patches from the remaining region of
the subimage as reference HR images for training. In this case, the
original HR images are not available and the degradation model
is unknown either. We compare our proposed aeDPCN with other
state-of-the-art methods at the scale factor 4. As shown in Fig. 10,
our aeDPCN recovers sharper edges and finer details than other
state-of-the-art methods. These results further indicate the bene-
fits of preserving endmember spectra as prior information, which
is consistent for different or unknown degradation models.

1 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
 o
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6. Discussion

Generalization performance. Since we extract the endmem-
er spectrum as the prior information for the SR problem, the test
ata of our method are required to have the same endmember
pectrum as the training data. On the one hand, our proposed
ethod can be regarded as an unsupervised image-specific SR
ethod for a single HSI. As proposed in Shocher, Cohen, and

rani (2018), due to modest amounts of computational resources,
ur method does not require pretraining. Specifically, at the test
ime, the proposed image-specific aeDPCN is trained on exam-
les extracted internally, from the test image itself. Therefore,
ur network can be adapted to the arbitrary degradations of
SI at test time. On the other hand, fortunately, most remotely
ensed hyperspectral images are only one large HSI with internal
imilarities, satisfying this requirement.
Super-resolution vs. unmixing. Different from the previous

orks (Miao & Qi, 2007; Palsson et al., 2018; Qu & Qi, 2018; Su
t al., 2019) involving unmixing based on matrix factorization,
ur method unifies the spectral decomposition and SR process
nto an end-to-end model to realize the single-image SR for HSI,
nstead of unmixing. Since we transform the SR problem into the
bundance domain, the hyperparameter c not only has a specific
hysical meaning, i.e., the number of endmembers, but also de-
ermines the expressive power and complexity of the network.
s indicated in Table 2, if high-quality super-resolution is the
oal, then it is generally better to set c larger than the number of
ctual materials in the scene. Meanwhile, in Miao and Qi (2007),
t has been pointed out that the unsupervised NMF algorithms
re sensitive to initializations due to the existence of local optima
nd the algorithm performance highly depends on the distance
etween the initial point and the global optimum. Hence, these
orks (Palsson et al., 2018; Qu & Qi, 2018; Su et al., 2019) for
SI unmixing are dedicated to imposing the special constraints
nd the optimal initialization to achieve good performance on
nmixing. However, except for simplex constraints (Eqs. (6) and
7)) for stability (Lanaras et al., 2015), we impose neither strong
onstraints nor initializations on the abundance or the endmem-
er. Therefore, the endmember extracted in our method might be
ot correct in the physical sense but more like a primitive (or an
tom/base of a dictionary) with strong expression ability.
Future work. The proposed deep-learning-based method may

argely rely on supervised learning. If there are only a few training
airs but high spectral dimensionality of hyperspectral image
ata, it would be easy to cause the over-fitting problem. There-
ore, in future research, we plan to combine the unsupervised
earning (Ieracitano et al., 2020; Zhu, Fu, & Zhao, 2020) to provide
ore trainable samples. In addition, the meta-learning strategy
ased on our abundance SR framework would also be studied for
etter SR performance.

. Conclusion

In this paper, we have proposed a novel dilated projection
orrection network with an autoencoder for HSI SR, called aeD-
CN. In our method, we transform the SR problem into the
bundance domain based on the insight that the HR and LR
SIs share the same basic spectrum, which could considerably
educe the computational complexity. The spatial resolution of
he LR abundance map is then progressively improved by the
ilated projection correction network with a large reception field.
eanwhile, we use the back-projection correction strategy to
nsure the generated abundance to follow the same pattern as
R abundance, which can reduce the spectral distortion. The final
rediction is produced by the same decoder which preserves the
pectrum information. The qualitative and quantitative results on
eal HSI scenes have demonstrated the stability and superiority of

ur method over the state-of-the-art at different scale factors.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 10. Visual comparison for ×4 HSI SR on the real-world images from Washington DC Mall with spectral bands 60-27-17 as R-G-B.
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